Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Predictive" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Just How Conservative Is Conservative Predictive Processing?
Autorzy:
Gładziejewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/600619.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
embodied cognition
enactivism
Free Energy Principle
inference
internalism
Predictive Processing
mental representation
Opis:
Predictive Processing (PP) framework construes perception and action (and perhaps other cognitive phenomena) as a matter of minimizing prediction error, i.e. the mismatch between the sensory input and sensory predictions generated by a hierarchically organized statistical model. There is a question of how PP fits into the debate between traditional, neurocentric and representation-heavy approaches in cognitive science and those approaches that see cognition as embodied, environmentally embedded, extended and (largely) representation-free. In the present paper, I aim to investigate and clarify the cognitivist or ‘conservative’ reading of PP. I argue that the conservative commitments of PP can be divided into three distinct categories: (1) representationalism, (2) inferentialism, and (3) internalism. I show how these commitments and their relations should be understood and argue for an interpretation of each that is both non-trivial and largely ecumenical towards the 4E literature. Conservative PP is as progressive as conservatism gets
Źródło:
Internetowy Magazyn Filozoficzny Hybris; 2017, 38 (3)
1689-4286
Pojawia się w:
Internetowy Magazyn Filozoficzny Hybris
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multinomial Logistic Regression Approach For The Evaluation Of Binary Diagnostic Test In Medical Research
Autorzy:
Dwivedi, Alok Kumar
Mallawaarachchi, Indika
Figueroa-Casas, Juan B.
Powiązania:
https://bibliotekanauki.pl/articles/465774.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
multinomial logistic regression predictive values
sensitivity, specificity
acute appendicitis
pulmonary abnormalities
medical diagnostic test
Opis:
Evaluating the effect of variables on diagnostic measures (sensitivity, specificity, positive, and negative predictive values) is often of interest to clinical researchers. Logistic regression (LR) models can be used to predict diagnostic measures of a screening test. A marginal model framework using generalized estimating equation (GEE) with logit/log link can be used to compare the diagnostic measures between two or more screening tests. These individual modeling approaches to each diagnostic measure ignore the dependency among these measures that might affect the association of covariates with each diagnostic measure. The diagnostic measures are computed using joint distribution of screening test result and reference test result which generates a multinomial response data. Thus, multinomial logistic regression (MLR) is a more appropriate approach to modeling these diagnostic measures. In this study, the validity of LR and GEE approaches as compared to MLR model was assessed for modeling diagnostic measures. All methods provided unbiased estimates of diagnostic measures in the absence of any covariate. LR and GEE methods produced more biased estimates as compared to MLR approach especially for small sample size studies. No bias was obtained in predicting sensitivity measure using MLR method for one screening test. Our proposed MLR method is robust for modeling diagnostic measures of a screening test as opposed to LR method. MLR method and GEE method produced similar estimates of diagnostic measures for comparing two screening tests in large sample size studies. The proposed MLR model for diagnostic measures is simple, and available in common statistical software. Our study demonstrates that MLR method should be preferred as an alternative for modeling diagnostic measures.
Źródło:
Statistics in Transition new series; 2015, 16, 2; 203-222
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies