Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Atlantic Arctic" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Temperatura wód atlantyckich na głębokości 200 m w Prądzie Zachodniospitsbergeńskim (76.5°N, 9-12°E), a temperatura powierzchni morza w tym rejonie (1996-2011)
Temperature of the Atlantic Water at a Depth of 200 m in the West Spitsbergen Current (76.5°N, 9-12°E) and the Sea Surface Temperature in this Region (1996-2011)
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260985.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Atlantycka
Prąd Zachodniospitsbergeński
wody atlantyckie
SST
korelacje
Atlantic Arctic
West Spitsbergen Current
Atlantic Water
correlation
Opis:
Praca omawia rozkład w czasie i przestrzeni związków, jakie zachodzą między temperaturą Wód Atlantyckich w Prądzie Zachodniospitsbergeńskim i temperaturą powierzchni morza (SST) na wodach wokół-spitsbergeńskich. Wykorzystano pomiary temperatury Wód Atlantyckich prowadzone przez Instytut Oceanologii PAN na głębokości ~200 m na profilu 76,5°N, 9-12°E (oznaczenie TW200). Szereg TW200 jest krótki (1996-2011) i stanowi średnią z pomiarów wykonywanych w lipcu i sierpniu. Celem pracy jest określenie w jakiej mierze stosowane powszechnie zbiory danych SST charakteryzują na tych akwenach zasoby ciepła w głębszych warstwach wód. Stwierdzono, że zbiory te dobrze charakteryzują podpowierzchniowe zasoby ciepła Wód Atlantyckich w chłodnej porze roku – okresie zimowego wychładzania oceanu – od listopada do kwietnia-maja. Jest to związane z działaniem intensywnej konwekcji. W sezonie ciepłym (od czerwca do października) związki między TW200 i SST stają się słabe ze względu na tworzenie się w przypowierzchniowej warstwie oceanu warstwy wygrzanych wód, stabilnych hydrostatycznie. W wyniku tego kontakt wód powierzchniowych z wodami zalegającymi głębiej ustaje i zmiany SST kształtują się pod wpływem zmian bilansu cieplnego powierzchni oceanu, bez większego wpływu zasobów ciepła wód zalegających głębiej. W przekrojach miesięcznych najsilniejsze związki między TW200 i SST zachodzą w kwietniu tego samego roku (SST wyprzedza moment pomiaru TW200) i w grudniu tego samego roku (SST jest opóźnione względem TW200). W ujęciu sezonowym najsilniejsze związki TW200 zachodzą ze średnią SST z okresu styczeń-kwiecień (SST01-04). Z wartością TW200 z danego roku związki takie zachodzą dwukrotnie – w tym samym roku co pomiar TW200 i w roku następnym. Rozkład współczynników korelacji wartości TW200 z SST na obszarze północnej części Morza Norweskiego, zachodniej części Morza Barentsa i NE części Morza Grenlandzkiego wskazuje, że wartość TW200 stanowi jeden z najważniejszych wskaź-ników klimatycznych dla tej części Arktyki.
The work discusses the distribution in time and space of relationships taking place between the temperature of the Atlantic Water in the West Spitsbergen Current and sea surface temperature of waters in the vicinity of Spitsbergen. Temperature of the Atlantic water is measured by the Institute of Oceanology of Polish Academy of Sciences at a depth of ~200 m along the profile 76.5°N, 9-12°E and is the average of the measurements taken in July and August along the profile (marked TW200). The measurement series TW200 is short (1996-2011; 16 years). The aim of this study is to determine the extent to which the commonly used SST data sets describe the resources of warm water in the deeper layers of the sea area. It was found that the SST data sets very well characterized subsurface warm water resources of the Atlantic in the cold season of the year – the winter cooling of the ocean – from November to April-May. It is connected with the action of intensive convection. In the period of warm season (June to October) the relationship between TW200 and SST becomes weak due to the formation of a hydrostatically stable layer of warm water in the surface layer of the ocean. As a result the contact of surface waters with deeper layers of water ceases and changes in SST are influenced by changes in ocean surface heat balance, without much impact of heat resources from deeper ocean. The strongest monthly correlations between the TW200 and SST occur in April of the same year (SST precedes time of measurement TW200) and in December of the same year (SST is delayed relatively to TW200). The strongest seasonal correlations between TW200 and mean SST occur from the period of January-April (SSTJFMA). Such correlations between the value of TW200 and SST in a given year occur twice – in the same year when TW200 was measured and the following year. The distribution of coefficients of correlation between TW200 and SST in the northern part of the Norwegian Sea, the western part of the Barents Sea and NE part of the Greenland Sea indicates that the value of the TW200 is one of the most important climatic factors for this part of the Arctic.
Źródło:
Problemy Klimatologii Polarnej; 2012, 22; 43-56
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rola międzystrefowej cyrkulacji południkowej nad wschodnią częścią Atlantyku Północnego w kształtowaniu niektórych cech klimatu Arktyki Atlantyckiej
Role of interzonal meridional circulation over the eastern part of the North Atlantic in formation of some features of the Atlantic Arctic climate
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/261001.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Atlantycka
cyrkulacja atmosferyczna
gwałtowne ocieplenia
Atlantic Arctic
atmospheric circulation
advection
rapid warming
Opis:
Artykuł omawia występowanie silnych adwekcji powietrza z szerokości umiarkowanych i pogra-nicza stref subtropikalnej i umiarkowanej do Arktyki Atlantyckiej (1950-2009). Te przepływy międzystrefowe stanowią przyczynę krótkookresowych (miesiąc, rzadziej 2 miesiące) silnych wzrostów temperatury w Arktyce Atlantyckiej, które znajdują następnie odbicie we wzroście temperatury rocznej. Osłabienie takich postaci cyrku-lacji w dłuższych okresach prowadzi do spadku temperatury w Arktyce Atlantyckiej. Przepływy międzystrefowe stanowią kombinację silnej cyrkulacji strefowej nad środkową częścią Atlantyku i silnej cyrkulacji południkowej nad wschodnią częścią Atlantyku Północnego, Europą Środkową i Półwyspem Skandynawskim. Są słabo powią-zane z AO i NAO, natomiast bardzo silnie ze wskaźnikami regionalnej cyrkulacji atmosferycznej w rejonie Spits-bergenu. Największą intensywność, ale i największą zmienność przepływów międzystrefowych, obserwuje się w chłodnej porze roku (październik-marzec). Ze zmiennością przepływów międzystrefowych silnie powiązana jest temperatura powietrza miesięcy chłodnej pory roku w środkowej i zachodniej części Arktyki Atlantyckiej, a w centralnej części Arktyki Atlantyckiej również bardzo silnie większość innych niż temperatura elementów klimatycznych (wilgotność względna, zachmurzenie ogólne, miesięczne sumy opadów, liczba dni z opadem, etc.). Pozwala to traktować zmienność intensywności przenosu międzystrefowego jako jeden z istotnych mecha-nizmów kształtujących zmienność klimatu w środkowej i zachodniej części Arktyki Atlantyckiej. Analiza jednak wykazuje, że zmiany intensywności przenosu międzystrefowego nie są przyczyną obserwowanego ocieplenia w tej części Arktyki.
The article describes the phenomenon of strong air advection from the subpolar lattitudes and the regions between subtropical and subpolar zones to the Atlantic Arctic (1950-2009). These interzonal flows are responsible for the short time periods (one month or less frequently two month periods) strong increases in temperature of the Atlantic Arctic which later on are reflected in the rise in the annual temperature. The decrease in these types of circulation over longer periods results in the decrease in temperature of the Atlantic Arctic. The interzonal flows are combination of strong zonal circulation over the central part of the Atlantic and strong meridional circulation over the eastern part of the North Atlantic, central Europe and the Scandinavian Peninsula. They are weakly correlated with AO and NAO but very strongly correlated with the indexes of the regional atmospheric circulation in the region of Spitsbergen. The greatest intensity and the most varied changeability in the interzonal flows can be observed in the cold season of the year (October – March). The air temperature of the cold season of the year in the central and western part of the Atlantic Arctic is significantly connected with the changeability in the interzonal flows and in the central part of the Atlantic Arctic it is not only temperature that is strongly correlated with the variability but also other climatic elements (relative humidity, overall cloudiness, monthly precipitation, number of days with precipitation, etc.). That is why the variability in the intensity of interzonal flow can be treated as one of the important mechanisms responsible for the changes in the climate in the central and western part of the Atlantic Arctic. However the analysis indicates that changes in the intensity of interzonal flow are not the cause of warming of this part of the Arctic.
Źródło:
Problemy Klimatologii Polarnej; 2010, 20; 7-29
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O związkach zmian ciśnienia w basenie Morza Śródziemnego ze zmianami ciśnienia w Arktyce Atlantyckiej (1951-2008)
Correlation of changes in pressure between the basin of the Mediterranean Sea and the Atlantic Arctic (1951-2008)
Autorzy:
Ferdynus, J.
Powiązania:
https://bibliotekanauki.pl/articles/260717.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Atlantycka
Morze Śródziemne
zmiany ciśnienia atmosferycznego
Atlantic Arctic
Mediterranean Sea
atmospheric pressure change
Opis:
Praca charakteryzuje miesięczne rozkłady przestrzenne związków między zmianami ciśnienia atmosferycznego na poziomie morza (SLP) nad Morzem Śródziemnym a zmianami SLP w Arktyce Atlantyckiej. Stwierdzono występowanie znacznych różnic regionalnych między zachodnią i wschodnią częścią Morza Śród-ziemnego. Nad zachodnią częścią morza związki te są silne i istotne statystycznie przez 9 miesięcy w roku, nad wschodnią – istotne, choć słabsze i ograniczone do 5 miesięcy. W obu częściach morza najsilniejsze związki zaznaczają się w miesiącach zimowych (listopad-marzec), zanikają w kwietniu oraz lipcu i sierpniu. Ich siła zmie-nia się w czasie: w latach 1951-1978 były słabsze, uległy wzmocnieniu w okresie 1978-2008. Wzrost siły związków stanowi rezultat spadku SLP w Arktyce Atlantyckiej i wzrostu SLP nad obszarem Morza Śródziemnego.
The process of changes of relations between the atmospheric pressure at the point over the West Spitsbergen Current axis (75°N and 15°E) and the atmospheric pressure at the Mediterranean Basin show that there are statistically remarkable interrelations within the meteorological elements, unstable in time, relatively stable in space and they appear during the winter period – from November to March. The space range covers also the areas of the Iberian Peninsula, France and Germany – especially in winter time and in the SLP scale. The negative and statistically important correlations between the Atlantic Arctic pressure and the Mediterranean Basin pressure can be observed mainly in the western part of the sea in the October-May period or even October-June period with the break in April. Such correlations can be observed in the eastern part of Mediterranean Basin only in the November-March period but they do not reach the western part values. The reason differentiating the winter correlations and non-winter ones is the difference of pressure between the Mediterranean Sea and the Atlantic Arctic. The strong relations appear in the conditions of big pressure differences (10.5-11.0 hPa between the Mediterranean Sea and the Atlantic Arctic. The reason of instability of these relations in time is the trend change above both areas. The change of the trend took place over the Mediterranean Sea and the Arctic in the years 1977-1978. It is considered that it is the effect of the change of the circulation system of the Northern Hemisphere.
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 115-128
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozkład przestrzenny oraz skala ocieplenia Arktyki Atlantyckiej w 30-leciu 1980-2009 i jej porównanie z 'wielkim ociepleniem Arktyki' lat 30. XX wieku
Spatial distribution and the scale of the Atlantic Arctic warming in a 30-year period from 1980 to 2009 and its comparison with the 'great warming of the Arctic' in the 30-ties of the 20th century
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/261031.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
trendy temperatury
ocieplenie Arktyki Atlantyckiej
air temperature
temperature trends
Atlantic Arctic warming
Opis:
Praca analizuje procesy zmian temperatury powietrza w Arktyce Atlantyckiej, jakie zachodziły w czasie współczesnego ocieplenia Arktyki (1980-2009). Przeprowadzono analizę trendów rocznych i sezonowych, obliczono również roczne i sezonowe różnice temperatury między średnimi z lat 2007-2009, a średnimi z lat 1980-1982. Analiza wykazała silne, wykazujące znaczne zróżnicowanie regionalne, wzrosty temperatury rocznej i sezonowej. Najsilniejszy wzrost w badanym okresie następował w okresie jesieni i zimy. Najsilniejsze trendy temperatury powietrza jesienią (> 0.15°Crok-1) występują w rejonie północo-zachodniej części Morza Karskiego oraz w rejonie Spitsbergenu. Zimą wartości najsilniejszych trendów przesuwają się ku zachodowi w rejon Spitsbergenu, a same trendy ulegają wzmocnieniu (>0.2°Crok-1). W okresie lata wartości trendów są niewielkie (+0.04-0.06°Crok-1), ale nad obszarami morskimi są statystycznie istotne. W okresie wiosny, poza pojedynczymi stacjami, trendów statystycznie istotnych brak. Nad obszarami lądowymi Eurazji, za wyjątkiem Półwyspu Skandynawskiego, trendy temperatury we wszystkich sezonach (porach roku) są słabe i przeważnie nieistotne. Znacznie silniejsze, i na ogół statystycznie istotne, trendy temperatury (poza okresem wiosny) występują nad obszarami morskimi, zwłaszcza tymi, do których jest swobodny dopływ wód atlantyckich. Zmiany rozkładu przestrzennego trendów i ich wartości w okresie jesiennym i zimowym wskazują, że wzrost temperatury powietrza jest powiązany ze strumieniami ciepła z oceanu do atmosfery. Porównanie sezonowego rozkładu trendów temperatury powietrza w czasie współczesnego ocieplenia z podobnym rozkładem trendów, jaki zaznaczał się w czasie 'ocieplenia Arktyki lat 30. XX wieku', wykazało, że na obszarze Arktyki Atlantyckiej w obu fazach ocieplenia Arktyki rozkład ten jest taki sam. Nie znajduje potwierdzenia na obszarze Arktyki Atlantyckiej wielokrotnie formułowana w literaturze przedmiotu teza, że w czasie obecnego ocieplenia Arktyki najsilniejsze trendy występują wiosną. Podobnie regionalny rozkład zmian temperatury powietrza zachodzący w czasie współczesnego ocieplenia jest taki sam, jak ten, który wystąpił w Arktyce Atlantyckiej w czasie ocieplenia Arktyki 'lat 30. XX wieku'. Najsilniejsze ocieplenie w obu fazach wzrostu temperatury w Arktyce Atlantyckiej wystąpiło nad tym samym obszarem, w którym w czasie ochłodzenia Arktyki w latach 60. XX wieku wystąpiło najsilniejsze ochłodzenie. Bezwzględna skala zmian temperatury i jej rozkład regionalny, jaka nastąpiła w latach 1980-2009 na obszarze Arktyki Atlantyckiej jest niemal taka sama, jak w czasie fazy ocieplenia 'lat 30. XX wieku'. Pozwala to twierdzić, że między oboma fazami ocieplenia tej części Arktyki brak jest różnic.
This work examines processes of changes in air temperature in the Arctic Atlantic which occurred during the contemporary Arctic warming (1980-2009, Fig. 1 and 2). An analysis of annual and seasonal trends has been carried out, as well as, calculations of the annual and seasonal temperature differences between the average of the years 2007, 2008 and 2009, and the average temperatures of the years 1980, 1981 and 1982. The analysis indicated strong, but showing considerable regional variation, increases in annual temperature and seasonal temperature (see Fig. 4 A2, B2, C2,D2 and 5B). The strongest increase in air temperature over the examined period was observed during the autumn and winter (Fig. 4 C2 and D2). The strongest trends of air temperature in autumn (> 0.15°Cyear-1) occur in the north-western part of the Kara Sea (between Franz Josef Land and Northern Land) and in the region of Spitsbergen (see Fig. 4 C1). In winter the strongest trends are moving westward into the region of Spitsbergen (Fig. 4 D1) and the same trends are strengthening (>0.2°Cyear-1). During summer the values of trends are small (+0.04-0.06°Cyear-1) but above the sea area these trends are statistically significant (Fig. 4 B1). In the spring, apart from individual stations, statistically significant trends are not noted (Fig. 4 A1). Over land areas of Eurasia, with the exception of the Scandinavian Peninsula, the temperature trends in all seasons (seasons of the year) are weak and mostly insignificant. Much stronger, and generally statistically significant, trends in temperature (apart from spring) occur over the sea areas, especially those where the Atlantic waters flow freely. Changes in the spatial distribution of trends and their values in the autumn and winter periods indicate that the increase in air temperature is correlated with heat flows from the ocean to the atmosphere. Comparison of seasonal distribution of temperature trends during the contemporary warming trend with a similar distribution, which was observed during the 'Arctic warming in the 30-ties 'of the twentieth century', indicated that the distribution is the same in the Arctic Atlantic in both phases of the Arctic warming. There is no proof of the thesis, so popular in literature, that trends are strongest in the contemporary Arctic warming in spring. Similarly, the regional distribution of air temperature changes occurring during the contemporary warming is the same as that which occurred in the Atlantic Arctic during the Arctic warming 'in the 30-ties of the twentieth century' (see Fig. 6). The Arctic in the 60-ties of the twentieth century experienced the strongest cooling (Fig. 7). The absolute scale of temperature changes and its regional distribution, which occurred in the years 1980-2009 in the Atlantic Arctic, is almost the same as during the warming phase 'of the 30-ties of the twentieth century'. This allows to state that there is no difference between those two phases of warming in this part of the Arctic.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 91-114
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany powierzchni lodów morskich w rejonie Svalbardu w latach 1901-1930
Changes in the sea-ice cover around Svalbard in 1901-1930
Autorzy:
Lange, K.
Powiązania:
https://bibliotekanauki.pl/articles/972206.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
zasięg lodu morskiego
Svalbard
Arktyka Atlantycka
sea-ice cover
ice extent
Atlantic Arctic
Opis:
Niedawno udostępnione mapy Duńskiego Instytutu Meteorologicznego (DMI) rzucają nowe światło na zmiany zasięgu lodów w Arktyce Atlantyckiej, które dotychczas były głównie oparte na zbiorach archiwalnych Norweskiego Instytutu Meteorologicznego. Artykuł przedstawia zmiany letniej pokrywy lodowej na obszarze między 50°W, a 70°E w sierpniach lat 1901-1930 obliczone na podstawie zmian zasięgu lodów w tym rejonie pokazanych na mapach z archiwum DMI. Obliczenia powierzchni lodów zostały dokonane w programie ArcGis 10.0 w układzie współrzędnych North Pole Lambert Azimuthal Equal Area. Przeprowadzone pomiary powierzchni zlodzonej potwierdzają rozrost pokrywy lodowej w latach 1907-1918 z maksimum w latach 1912 i 1913 oraz występowanie drugorzędnego maksimum rozwoju lodów w latach 1916 i 1917, po którym nastąpił ogólny spadek powierzchni lodów. W tym czasie wykrywa się dwie fazy gwałtownego spadku pokrywy lodowej na badanym akwenie – między rokiem 1921 i 1922 oraz między rokiem 1929 i 1930. Taki przebieg zmian powierzchni lodów w momencie bliskim osiągnięcia przez nie minimum rozwoju w cyklu rocznym jest z dużym przybliżeniem zgodny ze znanymi z pomiarów zmianami temperatury powietrza w tej części Arktyki.
Latest maps released by the Danish Meteorological Institute (DMI ) shed new light on the changes in the Arctic ice coverage that have been mainly based on archival Norwegian Meteorological Institute. The article presents the changes in the surface of sea ice in the area between 50°W and 70°W for the years 1901 to 1930 August , calculated on the basis of changes in ice coverage in the area shown on maps from the archives of DMI . ice surface Calculations have been made in the coordinate North Pole Lambert Azimuthal Equal Area using ArcGis 10.0 The measurements confirm iced surface of ice cover growth in the years 1907-1918 with a maximum between 1912 and 1913 and the presence of a secondary maximum ice growth in the years 1916 and 1917, after which there was a general decline in sea ice area. During this time, detected two phases of rapid decline of ice cover in the examined area between 1921 and 1922 and between 1929 and 1930. Such a course of changes in sea ice area at a time moment close to minimum of the annual cycle of development is close approximation consistent with known from measurements of air temperature changes in this part of the Arctic.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 169-179
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O związkach zmian temperatury powietrza w basenie Morza Śródziemnego ze zmianami ciśnienia w Arktyce Atlantyckiej (1951-2008)
Correlation between changes in air temperature at the basin of the Mediterranean Sea and changes in pressure in the Atlantic Arctic (1951-2008)
Autorzy:
Ferdynus, J.
Powiązania:
https://bibliotekanauki.pl/articles/260655.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka Atlantycka
Morze Śródziemne
ciśnienie atmosferyczne
temperatura powietrza
Atlantic Arctic
Mediterranean Sea
atmospheric pressure
air temperature
Opis:
W pracy opisano miesięczne rozkłady przestrzenne związków między zmianami temperatury powietrza w basenie Morza Śródziemnego a zmianami ciśnienia atmosferycznego (SLP) w Arktyce Atlantyckiej. Stwierdzono występowanie różnic regionalnych między poszczególnymi częściami morza. Związki te nie są zbyt silne i z reguły nie są istotne statystycznie, przy czym w zachodniej części są silniejsze niż we wschodniej. Zarówno w zachodniej, jak i wschodniej części basenu Morza Śródziemnego, silniejsze związki zaznaczają się w miesiącach schyłku jesieni i zimy, a w pozostałych miesiącach zanikają całkowicie. Brak zgodnych w czasie związków między SLP w Arktyce Atlantyckiej ze związkami z SLP i temperaturą powietrza nad obszarem śródziemnomorskim nasuwa podejrzenie, że związki między SLP w Arktyce Atlantyckiej a SLP nad Morzem Śródziemnym mogą być artefaktem statystycznym.
Analysis of the impact of pressure changes in the Atlantic Arctic on changes in air temperature in the Mediterranean region shows that the atmospheric circulation in the Arctic shows no relationship with air temperature over the area. Existing relations are generally weak and without statistical significance, much less than similar correlations in the area of Northern Europe and Siberia. Also the time distribution of relations is different. There is no compact autumn/winter “block” of strong negative relations. There appears only one short period (November-January), in which at the southern Mediterranean there are very strong positive relations. This means that the existence of pressure changes in the Atlantic Arctic is not a factor enforcing changes in air temperature over the Mediterranean Sea.
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 129-137
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trendy temperatury powietrza oraz liczby dni mroźnych i z przejściem temperatury przez 0°C w Arktyce Atlantyckiej i Syberyjskiej
The trends in air temperature and the number of ice and freeze-thaw days in the Atlantic and Siberian sector of Arctic
Autorzy:
Łupikasza, E.
Małarzewski, Ł.
Niedźwiedź, T.
Dobrowolska, K.
Powiązania:
https://bibliotekanauki.pl/articles/261053.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
trendy temperatury powietrza
dni mroźne
dni z przejściem temperatury przez 0°C
Arktyka Atlantycka
Arktyka Syberyjska
temperature trends
ice days
freeze-thaw days
Atlantic Arctic
Siberian Arctic
Opis:
Opracowanie dotyczy oceny zmienności wybranych charakterystyk termicznych na 4 wybranych stacjach meteorologicznych w obrębie atlantyckiego i syberyjskiego sektora Arktyki w okresie 1979-2013. Arktykę Atlantycką reprezentuje stacja w Hornsundzie (SW Spitsbergen) oraz w Danmarkshavn na wschodnim wybrzeżu Grenlandii. W pobliżu granicy obu regionów znajduje się stacja Dikson. Natomiast Arktykę Syberyjską dobrze reprezentuje stacja Ostrov Kotielnyj w archipelagu Wysp Nowosyberyjskich. Zmienność i trendy średniej temperatury powietrza oraz liczby dni mroźnych (Tmax<0°C) i dni z przejściem temperatury przez 0°C (Tmin≤0°C ^Tmax>0°C) przedstawiono w ujęciu rocznym i sezonowym. Znaczne ocieplenie w świetle średniej rocznej temperatury powietrza z trendami rzędu od +0,6°C do 1,0°C/10 lat znajduje odzwierciedlenie w tendencji spadkowej liczby dni mroźnych w obu regionach. Natomiast odmiennie kształtują się tendencje w występowaniu dni z przejściem temperatury przez 0°C, które są wzrostowe w Arktyce Atlantyckiej i spadkowe w Arktyce Syberyjskiej.
An increase in the air temperature is an evident manifestation of contemporary climate change. In the Arctic this trend began to be significant in the middle of the nineties and has been accompanied by significant changes in the frequency of thermally characteristic days. This paper discusses the directions and the rate of changes in the average annual and seasonal air temperatures, the number of ice days (Tmax<0°C) and the number of days with freeze-thaw events (Tmin≤0°C^Tmax>0°C) in both the Atlantic Arctic and The Siberian Arctic in the period 1979-2013. Four meteorological stations were considered: Danmarkshavn, Hornsund, Dikson, Ostrov Kotielnyj. In this paper annual courses of the above mentioned characteristics of air temperature are recognized and their trends are calculated from annual and seasonal perspectives. Trend magnitude was assessed with least square method and its significance was tested with Mann-Kendall test. Trends were calculated for several long-term periods starting with the 30-year period of 1979-2008 followed by further periods of which each was lengthened by a year in relation to preceding period, e.g. 1979-2009, 1979-2010 etc. Such an approach enables the trends stability assessment. At the stations considered average monthly air temperature was varying in the range from about -30°C in February at Ostrov Kotielnyj station to slightly more than +5°C in July and August at Dikson station. The mildest thermal conditions characterize Hornsund station where average monthly temperature in winter months reaches about -10°C and during four months (June-September) it is above 0°C. Statistically significant increase in the average annual air temperature of magnitude of +1.0°C or +0.8°C per 10 years was found at all the stations. Trends in the seasonal air temperature were also positive however not always significant. The strongest increase of the rate of more than +2.0°C per 10 yrs was found at Hornsund in winter for the period of 1979-2013. Spring air temperature showed significant increasing trends for all of the long-term periods at the station in Siberian Arctic (Ostrov Kotielnyj) and Dikson. At both Ostrov Kotielnyj and Danmarkshavn stations significant increase of temperature in this season started from the period of 1979-2010. Trends in autumn temperature were significant and stable at most of the stations. At Dikson station exclusively an increase in temperature reached statistical significance slightly later - in the period of 1979-2011. Significant changes in average air temperature caused changes in the frequency of thermally characteristic days. Trends in the frequency of both ice days and days with freeze-thaw events were less significant. The frequency of ice days has been diminishing at all of the stations but significant were mostly annual trends. Significant decrease of the ice days was found at Ostrov Kotielnyj and Danmarkshavn stations in spring and at Hornsund station in summer. In summer significant were also trends for the longest of the multiyear periods analysed at Ostrov Kotielnyj and Danmarkshavn stations. In autumn downward trends were stable at Ostrov Kotielnyj station. At other stations trends in this index were significant only for the period of 1979-2013. A direction of trends in the frequency of days with freeze-thaw event is less stable. In the case of annual index values trends were negative at Ostrov Kotielnyj and Dikson stations whereas at other stations they were positive. Trend directions in the frequency of days with Tmin≤0°C^Tmax>0°C varied depending on season. In spring and autumn trends were positive at majority of the stations. However, they were significant only in spring at Ostrov Kotielnyj and Danmarkshavn stations. In summer trends in this index were negative. This decrease was the strongest and the most pronounced at Dikson station.
Źródło:
Problemy Klimatologii Polarnej; 2014, 24; 5-24
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamika wskaźników cyrkulacji nad Spitsbergenem
Dynamics of circulation indices over Spitsbergen
Autorzy:
Niedźwiedź, T.
Łupikasza, E.
Powiązania:
https://bibliotekanauki.pl/articles/260903.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
cyrkulacja atmosfery
wskaźniki cyrkulacji
Arktyka Atlantycka
Spitsbergen
atmospheric circulation
circulation indices
Atlantic sector of the Arctic
Opis:
Artykuł dotyczy wieloletnich zmian cyrkulacji atmosfery nad Spitsbergenem opisanej za pomocą trzech syntetycznych wskaźników cyrkulacji – wskaźnika cyrkulacji strefowej W, wskaźnika cyrkulacji południkowej S oraz wskaźnika cykloniczności C – wyznaczonych na podstawie częstości występowania typów cyrkulacji nad Spitsbergenem. W odpracowaniu wykorzystano chronologiczne ciągi wymienionych wskaźników za okres od grudnia 1950 do września 2015 roku. Artykuł jest aktualizacją wcześniejszych opracowań publikowanych w latach 2001 i 2006. Pomimo iż Spitsbergen leży w strefie dominacji wiatrów wschodnich to w okresie badawczym stwierdzono istotny statystycznie wzrost częstości adwekcji powietrza z zachodu oraz wzrost częstości występowania układów niżowych w skali roku. Istotny wzrost występowania sytuacji niżowych stwierdzono również w większości sezonów z wyjątkiem lata. Cyrkulacja strefowa (wskaźnika W) nie podlegała istotnym statystycznie zmianom w rozpatrywanym okresie. Kierunek trendów wskaźnika cyrkulacji południkowej S zmieniał się w zależności od pory roku, przy czym statystycznie istotny był jedynie wzrostowy trend zimą wskazujący na wzrost nasilenia napływu powietrza z sektora południowego.
This paper discusses long-term variability of atmospheric circulation over Spitsbergen using three complex circulation indices – zonal circulation index W, meridional circulation index S and cyclonicity index C. The indices were calculated on the basis of the frequency of circulation types occurrence over Spitsbergen. Chronological series of circulation indices covering the period from December 1950 to September 2015 were used. This paper is an update of previously published papers in 2001 and 2006 on the changes in atmospheric circulation over Spitsbergen. Although Spitsbergen is located in the zone of eastern winds dominance, significant increase in the frequency of air advection from the west and increase in the frequency of low pressure systems were found on annual scale. Significant increasing trends in the frequency of cyclonic types were also found in every season except for summer. Trends in W index were not statistically significant on seasonal scale. Direction of trends in meridional circulation index (S index) is diversified depending on season however significant changes were only found in winter indicating an increase in the air advection from the southern sector.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 153-167
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propagacja ciepłych anomalii w Prądzie Zachodniospitsbergeńskim
Warm anomalies propagation in the West Spitsbergen Current
Autorzy:
Walczowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/260779.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Prąd Zachodniospitsbergeński
Woda Atlantycka
klimat
Arktyka
Arctic
West Spitsbergen Current
Atlantic Water
climate
Opis:
Badania Prądu Zachodniospitsbergeńskiego prowadzone przez Instytut Oceanologii PAN wykazały skomplikowaną strukturę transportu Wody Atlantyckiej w stronę Oceanu Arktycznego. Od roku 2004 zauważalne było intensywne ocieplenie się prądu. Dzięki obserwacji adwekcji ciepłych anomalii, określono pręd-kość propagacji sygnału przez wschodnią i zachodnią gałąź Prądu Zachodniospitsbergeńskiego. Zarówno wzrost temperatury, jak struktura transportu Wody Atlantyckiej mają istotne znaczenie dla klimatu i warunków ekologicznych Arktyki.
Progressive warming of the West Spitsbergen Current (WSC) has been observed by Institute of Oceanology Polish Academy of Science (IOPAS) since summer 2004. Northward shifting of the Atlantic Water tongue was considerable; between 2004 and 2006 isotherm 5°C at 100 m moved to the north mort than 2° of latitude. Comparing published results from the Svinoy Section with IOPAS data, rate of warm impulse propagation in the WSC eastern branch has been estimated as 3–35 cm/s. In the western branch observations of warm anomalies allowed to estimate warm signal propagation mean velocity as 1.9–2.1 cm/s.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 71-76
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Próba analizy związku opadów o dużych sumach dobowych z cyrkulacją atmosferyczną na wybranych stacjach Arktyki Atlantyckiej w okresie 1981-2010
Trial analysis of high efficiency atmospheric precipitation with respect to atmospheric circulation in selected stations of the Atlantic part of the Arctic in 1981-2010
Autorzy:
Muskała, P.
Migała, K.
Korzystka, M.
Piasecki, J.
Powiązania:
https://bibliotekanauki.pl/articles/261065.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
opad atmosferyczny
Arktyka
Atlantyk Północny
opad o dużej sumie dobowej
zmiany klimatu
atmospheric precipitation
Arctic
North Atlantic
high efficiency precipitation
climate change
Opis:
Opad atmosferyczny o dużej wydajności, szczególnie w odniesieniu do zmian klimatu, jest jednym z ważnych czynników wpływających na funkcjonowanie geoekosystemów środowiska obszarów polarnych. Celem niniejszego opracowania była analiza dobowych sum opadu atmosferycznego na dziewięciu wybranych stacjach synoptycznych atlantyckiego sektora Arktyki w wieloleciu 1981-2010. Dla całego analizowanego obszaru stwierdzono istotny udział opadów o dobowych sumach przekraczających 10 mm w rocznych i miesięcznych sumach opadu. Na części analizowanych stacji (Hornsund, Ny Alesund) odnotowano niewielki wzrost częstości występowania opadów o dużych sumach dobowych, jednak na podstawie przeanalizowanych danych nie można jednoznacznie stwierdzić wzrostu w odniesieniu do wszystkich analizowanych stacji, a tym bardziej do całego atlantyckiego wycinka Arktyki. Występowanie opadów o dużym natężeniu wiązało się z konkretnymi typami cyrkulacji atmosferycznej. Dla większości stacji najbardziej opadonośna była cyrkulacja z sektora południowego.
Contemporary climate change mark out intensively in polar regions. Due to some climatologists one of the most important effects of climate change is increase of frequency and intensity of atmospheric precipitation. It has a significant meaning for functioning of polar geoecosystems, especially for glacier ice mass balance, duration and height of snow cover, intensity of hydrological and geomorphological processes as well as the animated environment. The research objective of this study is trial analysis of high efficiency precipitation events in nine chosen synoptic stations in the Atlantic part of the Arctic in period 1981-2010 with particular focus on the first decade of the 21st century as well analyses of these cases in terms of synoptic conditions. Significant contribution of high efficiency precipitation in monthly and yearly precipitation sums have been found in all analysed stations. In some of the analysed stations there was a slight increase of frequency of high efficiency precipitation noticed, however basing on the analysed data it is impossible to explicitly show an increasing trend neither in all analysed stations nor the more in the whole Atlantic Arctic. Correlation between high efficiency precipitation and atmospheric circulation types was very clear. For majority of stations the southern circulation was crucial for high precipitation (humid air masses inflow). In some cases there was clearly visible role of location of the station and influence of orography on the precipitation field. It is important to notice the quality of available databases and considerable difficulties in obtaining reliable, complete and homogenous precipitation data, what makes all analyses of this climatological element in polar areas difficult. The results shown in this study should be regarded as preliminary and basis for further discussion on signalized problems.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 107-120
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany zlodzenia Morza Karskiego w latach 1979-2015. Podejście systemowe
Changes of sea ice extent on the Kara Sea in the years 1979-2015. System approach
Autorzy:
Styszyńska, A.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260907.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
zmiany powierzchni lodów
THC
temperatura powietrza
temperatura wody powierzchniowej
Morze Karskie
Arktyka
Atlantyk Północny
ice cover
changes in sea-ice extent
air temperature
sea surface temperature
Kara Sea
Arctic
North Atlantic
Opis:
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 109-156
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozmiary i przebieg współczesnego ocieplenia Arktyki w rejonie mórz Barentsa i Karskiego
Dimension and course of the present warming of the Arctic in the region of the Barents and Kara seas
Autorzy:
Marsz, A. A.
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260739.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
współczesne ocieplenie
temperatura powietrza
trendy temperatury powietrza
temperatura powierzchni morza
wody atlantyckie
delta Golfsztromu
Arktyka
Morze Barentsa
Morze Karskie
present warming
air temperature
sea surface temperature
Atlantic waters
Gulf Stream
Arctic
Barents Sea
Kara sea
Opis:
Celem pracy była analiza rozmiarów i przebiegu współczesnego (1980-2007) ocieplenia wschod-niej części Arktyki Atlantyckiej w rejonie mórz Barentsa i Karskiego. Stwierdzono, że w tym okresie ocieplenie posiadało charakter pulsacyjny, składało się z kolejnych, coraz silniejszych wzrostów temperatury powietrza, oddzielanych od siebie okresami ochłodzeń. Poszczególnym fazom ocieplenia odpowiadają wzrosty transportu ciepłych wód atlantyckich do Morza Barentsa i wzrosty temperatury powierzchni morza (SST). Najwyraźniejsze fazy ocieplenia wystąpiły w latach 1988-1990 i 2002-2007. Najsilniejsze wzrosty temperatury zaznaczyły się w za-chodniej i północno-zachodniej części obszaru, najsłabsze na południowych wybrzeżach mórz Barentsa i Karskiego. Wzrost rocznej temperatury powietrza między okresami 1980-1982 a 2005-2007 może być szacowany na około 5°C w północo-zachodniej części obszaru (N i NW część Morza Barentsa) do około 1.5°C na południowo-wschod-nich wybrzeżach Morza Barentsa i południowo-zachodnich wybrzeżach Morza Karskiego. Analiza trendów wyka-zała, że statystycznie istotne trendy roczne występują jedynie na północnych i zachodnich skrajach badanego obszaru. W trendach sezonowych największą liczbę statystycznie istotnych trendów na poszczególnych stacjach obserwuje się latem. Średnie obszarowe trendy są jednakowe jesienią, zimą i wiosną (+0.065°Cźrok-1), wyraźnie niższe latem (+0.044°Cźrok-1), istotne statystycznie od wiosny do jesieni, nieistotne zimą. Analiza trendów mie-sięcznych wykazuje, że obraz, jaki daje analiza trendów sezonowych wiosny (III-V), lata (VI-VIII), jesieni (IX-XI) i zimy (XII-II) nie daje rzeczywistego obrazu rozkładu zmian temperatury w czasie. Wartości trendów miesięcznych rozłożone są skrajnie nierównomiernie, w okresie od listopada do stycznia oraz w kwietniu średnie wartości tren-dów na omawianym obszarze są większe od 0.1°Cźrok-1, w pozostałych miesiącach zawierają się w granicach od +0.020 (luty) do +0.052°Cźrok-1 (sierpień). Główną przyczyną obserwowanych zmian temperatury powietrza w rejonie obu mórz jest wzrost zasobów ciepła w wodach atlantyckich transportowanych do Arktyki z tropików i subtropików przez cyrkulację oceaniczną. Wzrost zasobów ciepła w wodach kierowanych z delty Golfsztromu na północ prowadzi z 1-4 letnim opóźnieniem do wzrostu SST i spadku powierzchni lodów na Morzu Barentsa, w mniejszym stopniu na Morzu Karskim. Oba czynniki (zmiany SST i zmiany powierzchni lodów) regulują następnie temperaturę powietrza, głównie poprzez wpływ na rozmiary strumieni ciepła z powierzchni morza do atmosfery. Znaczny wpływ na modyfikowanie zmian temperatury powietrza w stosunku do zmian wymuszanych przez zmiany SST ma regionalna cyrkulacja atmosferyczna, natomiast hemisferyczna (Oscylacja Arktyczna) i makroregionalna (NAO) mody cyrkulacyjne wywierają w rozpatrywanym okresie znikomy wpływ na zmiany temperatury powietrza, zmiany SST i zmiany powierzchni lodów morskich na morzach Barentsa i Karskim.
The aim of this work is the analysis of the dimensions and the course of contemporary (1980-2007) warming of the east part of the Atlantic Arctic in the region of the Barents and Kara seas (fig. 1, tab. 1). It has been noted that the warming in that period had pulsating character, was made up of consecutive stronger and stronger increases in air temperature, separated from each other by cooling periods (fig. 4, 6-7). The increase in the transport of warm Atlantic waters into the Barents Sea and the increase in SST (sea surface temperature) of this sea correspond to the subsequent phases of warming. The most significant phases of warming were noted in the years 1988-1990 and 2002-2007 (fig. 4). The strongest increases in temperature were marked in the west and north- west part of this region and the weakest in the south coast of the Barents and Kara seas (fig. 6-7). The annual increase in air temperature between the periods 1980-1982 and 2005-2007 may be estimated as about 5°C in the north-west part of this region (N and NW part of the Barents Sea) and as 1.5°C in the south-east coast of the Barents Sea and south – west coast of the Kara Sea (fig. 8). The analysis of trends indicated that the statistically significant annual trends are only observed in the north and west parts of the examined region (fig. 9-10). The greatest number of statistically significant trends in seasonal trends at the observed stations was noted in summer (table 2). The mean regional trends are equal in autumn, winter and spring (+0.065°Cźyear-1), significantly lower in summer (+0.044°Cźyear-1), statistically significant from spring to autumn and not significant in winter. The analysis of monthly trends indicated that the picture obtained from the analysis of seasonal trends (spring – III-V, summer – VI-VIII, autumn – IX-XI, winter – XII-II) does not reflect the real picture of the distribution of changes in temperature in time. The values of monthly trends are distributed in an extremely uneven way, in the period from November to January and in April the mean values of trends in the examined region are larger than 0.1°C year-1 and in the remaining months can be found within the limits from +0.020 (February) to +0.052°C year-1 (August) - see table 3. The main reason for the observed changes in air temperature in the region of both seas can be attributed to the increase in heat resources in the Atlantic waters transported to the Arctic from the tropics and sub-tropics with the oceanic circulation. The increase in heat resources in the waters imported north from the Gulf Stream, leads to the increase, delayed by 1-4 year in SST and to the decrease in the sea ice cover of the Barents Sea and, to a lesser extent, of the Kara Sea (tab. 4-6, fig. 13 and 15). Both factors (changes in SST and changes in sea ice extent) further control the air temperature mainly via the influence on the size of flow from the sea surface to the atmosphere. Great influence on the modification of changes in air temperature in relation to changes forced by changes in SST has the regional atmospheric circulation, whereas the hemispherical (AO) and macro-regional (NAO) circulation modes have little influence on the changes in air temperature, on changes in SST and on changes in sea ice extent of the Barents and Kara seas.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 35-67
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies