Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uniquely partitionable graphs" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
The order of uniquely partitionable graphs
Autorzy:
Broere, Izak
Frick, Marietjie
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/972025.pdf
Data publikacji:
1997
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
uniquely partitionable graphs
Opis:
Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition {V₁,...,Vₙ} of V(G) such that, for each i = 1,...,n, the subgraph of G induced by $V_i$ has property $_i$. If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.
Źródło:
Discussiones Mathematicae Graph Theory; 1997, 17, 1; 115-125
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
Autorzy:
Broere, Izak
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743535.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary properties
reducibility
divisibility
uniquely partitionable graphs.
Opis:
Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition {V₁,V₂,...,Vₙ} of V(G) such that $G[V_i] ∈ _i$ for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if $_i$ and $_j$ are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ {1,2,...,n}.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 31-37
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remarks on the existence of uniquely partitionable planar graphs
Autorzy:
Borowiecki, Mieczysław
Mihók, Peter
Tuza, Zsolt
Voigt, M.
Powiązania:
https://bibliotekanauki.pl/articles/744146.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
property of graphs
additive
hereditary
vertex partition
uniquely partitionable graphs
Opis:
We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (₁,₁)-partitionable planar graphs with respect to the property ₁ "to be a forest".
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 2; 159-166
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniquely partitionable planar graphs with respect to properties having a forbidden tree
Autorzy:
Bucko, Jozef
Ivančo, Jaroslav
Powiązania:
https://bibliotekanauki.pl/articles/744245.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
uniquely partitionable planar graphs
forbidden graphs
Opis:
Let ₁, ₂ be graph properties. A vertex (₁,₂)-partition of a graph G is a partition {V₁,V₂} of V(G) such that for i = 1,2 the induced subgraph $G[V_i]$ has the property $_i$. A property ℜ = ₁∘₂ is defined to be the set of all graphs having a vertex (₁,₂)-partition. A graph G ∈ ₁∘₂ is said to be uniquely (₁,₂)-partitionable if G has exactly one vertex (₁,₂)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 1; 71-78
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On infinite uniquely partitionable graphs and graph properties of finite character
Autorzy:
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743160.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph property of finite character
reducibility
uniquely partitionable graphs
weakly universal graph
Opis:
A graph property is any nonempty isomorphism-closed class of simple (finite or infinite) graphs. A graph property is of finite character if a graph G has a property if and only if every finite induced subgraph of G has a property . Let ₁,₂,...,ₙ be graph properties of finite character, a graph G is said to be (uniquely) (₁, ₂, ...,ₙ)-partitionable if there is an (exactly one) partition {V₁, V₂, ..., Vₙ} of V(G) such that $G[V_i] ∈ _i$ for i = 1,2,...,n. Let us denote by ℜ = ₁ ∘ ₂ ∘ ... ∘ ₙ the class of all (₁,₂,...,ₙ)-partitionable graphs. A property ℜ = ₁ ∘ ₂ ∘ ... ∘ ₙ, n ≥ 2 is said to be reducible. We prove that any reducible additive graph property ℜ of finite character has a uniquely (₁, ₂, ...,ₙ)-partitionable countable generating graph. We also prove that for a reducible additive hereditary graph property ℜ of finite character there exists a weakly universal countable graph if and only if each property $_i$ has a weakly universal graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 241-251
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unique factorization theorem
Autorzy:
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743745.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary
additive property of graphs
reducible property of graphs
unique factorization
uniquely partitionable graphs
generating sets
Opis:
A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let ₁,₂, ...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable (G has property ₁ º₂ º... ºₙ) if the vertex set V(G) of G can be partitioned into n sets V₁,V₂,..., Vₙ such that the subgraph $G[V_i]$ of G induced by V_i belongs to $_i$; i = 1,2,...,n. A property is said to be reducible if there exist properties ₁ and ₂ such that = ₁ º₂; otherwise the property is irreducible. We prove that every additive and induced-hereditary property is uniquely factorizable into irreducible factors. Moreover the unique factorization implies the existence of uniquely (₁,₂, ...,ₙ)-partitionable graphs for any irreducible properties ₁,₂, ...,ₙ.
Źródło:
Discussiones Mathematicae Graph Theory; 2000, 20, 1; 143-154
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies