Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "load forecasting" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Grid Search of Convolutional Neural Network model in the case of load forecasting
Autorzy:
Tran, Thanh Ngoc
Powiązania:
https://bibliotekanauki.pl/articles/1841362.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
load forecasting
grid search
convolutional neural network
Opis:
The Convolutional Neural Network (CNN) model is one of the most effective models for load forecasting with hyperparameters which can be used not only to determine the CNN structure and but also to train the CNN model. This paper proposes a frame work for Grid Search hyperparameters of the CNN model. In a training process, the optimalmodels will specify conditions that satisfy requirement for minimum of accuracy scoresof Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). In the testing process, these optimal models will be used to evaluate the results along with all other ones. The results indicated that the optimal models have accuracy scores near the minimum values. Load demand data of Queensland (Australia) and Ho Chi Minh City (Vietnam) were utilized to verify the accuracy and reliability of the Grid Search framework.
Źródło:
Archives of Electrical Engineering; 2021, 70, 1; 25-36
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Power Demand Estimation in Quasi-Real Time in a Medium Voltage Grid Area Under Conditions of Limited Observability
Autorzy:
Pakulski, T.
Bronk, L.
Powiązania:
https://bibliotekanauki.pl/articles/397233.pdf
Data publikacji:
2018
Wydawca:
ENERGA
Tematy:
load forecasting
MV grid
local balancing area
prognozowanie obciążeń
sieć SN
lokalny obszar bilansowania
Opis:
The paper presents the possibilities of practical use of available measurements to estimate in quasi-real time the demand for active (P) and reactive (Q) powers in a selected medium voltage (MV) grid area under conditions of limited observability. To estimate customers instantaneous power demand, the next day load forecasts, energy consumption profiles obtained off-line from AMI (Advanced Metering Infrastructure) balancing meters, P and Q power measurements in selected MV/ LV transformation points (reference substations), and meteorological measurements were used. To build the forecasting model, the artificial intelligence methods based on neural networks contained in MATLAB computing environment were used. The power demand and distribution grid operating status estimation method was used in the project “Development of a local balancing area as an element of increasing the distribution system operation security and energy efficiency”. The task was financed under the GEKON Program by NCBiR National Centre of Research and Development and NFOŚiGW National Fund for Environmental Protection and Water Management, and implemented with the participation of ENERGA-OPERATOR SA, the University of Zielona Gora and the Institute of Power Engineering, Gdansk Division.
Źródło:
Acta Energetica; 2018, 4; 68-74
2300-3022
Pojawia się w:
Acta Energetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Loadability maximisation in bilateral network for real-time forecasting system using cuckoo search algorithm
Autorzy:
Venkatasivanagaraju, S.
Rao, M. Venkateswara
Powiązania:
https://bibliotekanauki.pl/articles/38699704.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
optimal power flow
NR method
short-term load forecasting
long-term load forecasting
cuckoo search algorithm
optimisation
loss minimisation
optymalny przepływ mocy
metoda NR
krótkoterminowe prognozowanie obciążeń
długoterminowe prognozowanie obciążeń
algorytm kukułki
optymalizacja
minimalizacja strat
Opis:
This manuscript proposes an optimal power flow (OPF) solution in a coordinated bilateralpower network. The primary goal of this project is to maximise the benefits of the powermarket using Newton–Raphson (NR) and cuckoo search algorithm CSA methodologies.The global solution is found using a CSA-based optimisation approach. The study isconducted on real-time bus system. To avoid this, creative techniques have lately beenused to handle the OPF problem, such as loadability maximisation for real-time predictionsystems employing the CSA. In this work, cuckoo search (CS) is used to optimise theobtained parameters that help to minimise parameters in the predecessor and consequentunits of each sub-model. The proposed approach is used to estimate the power load in thelocal area. The constructed models show excellent predicting performance based on derivedperformance. The results confirm the method’s validity. The outcomes are compared withthose obtained by using the NR method. CSA outperformed the other methods in thisinvestigation and gave more accurate predictions. The OPF problem is solved via CSAin this study. Implementing a real-time data case bus system is recommended to test theperformance of the established method in the MATLAB programme.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 1; 73-88
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic Rating of 110 kV Overhead Lines
Wyznaczanie dynamicznej obciążalności linii napowietrznych 110 kV
Autorzy:
Babś, A.
Samotyjak, T.
Powiązania:
https://bibliotekanauki.pl/articles/396824.pdf
Data publikacji:
2016
Wydawca:
ENERGA
Tematy:
dynamic line rating
thermal line model
load forecasting
dynamiczna obciążalność linii
model cieplny linii
prognozowanie obciążenia
Opis:
The paper justifies the need of using, within the 110 kV networks, a dynamic line rating model along the power lines. The work describes in detail the way in which the dynamic line rating is determined, basing the process solely on measurement of the weather conditions. Some aspects related to selection of the numerical values of the coefficients present in the heat model of the power-lines, which is being used to determine the dynamic line rating and the distance between the ground and the conductor, have been described. Subsequent stages of implementation of the system used to determine the dynamic line rating of the power lines have also been described. These include selection of the critical spans of the overhead lines, in case of which risk of exceeding the distance to the crossed-over objects is higher than in case the of the other spans of the very same power line. Additionally, optimal displacement of the weather-reporting stations, that are the source of the data used to determine the dynamic line rating of the lines, has been described. The work also deals with applications of the dynamic line rating for the power line related to the dangerous situation in case of which rime (ice) would be accumulated on the conductors. The forecasting procedures, regarding the load imposed on the power-lines, within a defined time period are also considered by the present paper. Forecasting the permissible load for the power lines is one of the main elements of planning an energy transmission system. Conclusions have been drawn regarding selection of the methodology which is to be used to determine the dynamic line rating, and the way of implementing and using these conclusions within the scope of maintaining the electric energy network.
W artykule uzasadniono celowość i potrzebę wykorzystywania w prowadzeniu ruchu sieci 110 kV dynamicznej obciążalności linii. Szczegółowo opisano wyznaczanie dynamicznej obciążalności linii z wykorzystaniem wyłącznie pomiaru warunków pogodowych. Opisano niektóre aspekty doboru wartości liczbowych współczynników występujących w modelu cieplnym linii, wykorzystywanym do wyznaczania dynamicznej obciążalności linii oraz odległości przewodu od ziemi. Opisano kolejne etapy wdrożenia systemu wyznaczania dynamicznej obciążalności linii, związane m.in. z wyborem przęseł krytycznych, tj. przęseł, w których ryzyko przekroczenia minimalnej odległości od obiektów krzyżowanych jest większe niż w przypadku innych przęseł tej samej linii, oraz optymalnym rozmieszczeniem stacji pogodowych będących źródłem danych dla wyznaczania dynamicznej obciążalności linii. Opisano również inne zastosowania wyznaczania dynamicznej obciążalności linii związane z monitorowaniem jej zagrożenia wystąpieniem oblodzenia (szadzi) oraz prognozowania obciążenia linii w określonym horyzoncie czasowym. Prognozowanie dopuszczalnego obciążania linii jest jednym z elementów planowania pracy systemu elektroenergetycznego. Sformułowano wnioski co do wyboru metody wyznaczania dynamicznej obciążalności linii oraz sposobu wdrożenia i wykorzystania w prowadzeniu ruchu sieci elektroenergetycznej.
Źródło:
Acta Energetica; 2016, 3; 4-9
2300-3022
Pojawia się w:
Acta Energetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Short-term load prediction model combining FEW and IHS algorithm
Autorzy:
Yu, Mingxing
Zhu, Jiazheng
Yang, Li
Powiązania:
https://bibliotekanauki.pl/articles/141740.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
evaluation criteria
exponential fuzzy time series
fitness function
improved harmony search algorithms
load forecasting
optimal interval length
Opis:
:Accurate prediction of power load plays a crucial role in the power industry and provides economic operation decisions for the power operation department. Due to the unpredictability and periodicity of power load, an improved method to deal with complex nonlinear relation was adopted, and a short-term load forecasting model combining FEW (fuzzy exponential weighting) and IHS (improved harmonic search) algorithms was proposed. Firstly, the domain space was defined, the harmony memory base was initialized, and the fuzzy logic relation was identified. Then the optimal interval length was calculated using the training sample data, and local and global optimum were updated by optimization criteria and judging criteria. Finally, the optimized parameters obtained by an IHS algorithm were applied to the FEW model and the load data of the Huludao region (2013) in Northeast China in May. The accuracy of the proposed model was verified using an evaluation criterion as the fitness function. The results of error analysis show that the model can effectively predict short-term power load data and has high stability and accuracy, which provides a reference for application of short-term prediction in other industrial fields.
Źródło:
Archives of Electrical Engineering; 2019, 68, 4; 907-923
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble neural network approach for accurate load forecasting in a power system
Autorzy:
Siwek, K.
Osowski, S.
Szupiluk, R.
Powiązania:
https://bibliotekanauki.pl/articles/907659.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
ślepa separacja sygnałów
prognozowanie obciążenia
neural network
blind source separation
ensemble of predictors
load forecasting
Opis:
The paper presents an improved method for 1-24 hours load forecasting in the power system, integrating and combining different neural forecasting results by an ensemble system. We will integrate the results of partial predictions made by three solutions, out of which one relies on a multilayer perceptron and two others on self-organizing networks of the competitive type. As the expert system we will apply different integration methods: simple averaging, SVD based weighted averaging, principal component analysis and blind source separation. The results of numerical experiments, concerning forecasting the hourly load for the next 24 hours of the Polish power system, will be presented and discussed. We will compare the performance of different ensemble methods on the basis of the mean absolute percentage error, mean squared error and maximum percentage error. They show a significant improvement of the proposed ensemble method in comparison to the individual results of prediction. The comparison of our work with the results of other papers for the same data proves the superiority of our approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 2; 303-315
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An overview of deep learning techniques for short-term electricity load forecasting
Autorzy:
Adewuyi, Saheed
Aina, Segun
Uzunuigbe, Moses
Lawal, Aderonke
Oluwaranti, Adeniran
Powiązania:
https://bibliotekanauki.pl/articles/117932.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
Short-term Load Forecasting
Deep Learning Architectures
RNN
LSTM
CNN
SAE
prognozowanie obciążenia krótkoterminowego
architektura głębokiego uczenia
Opis:
This paper presents an overview of some Deep Learning (DL) techniques applicable to forecasting electricity consumptions, especially in the short-term horizon. The paper introduced key parts of four DL architectures including the RNN, LSTM, CNN and SAE, which are recently adopted in implementing Short-term (electricity) Load Forecasting problems. It further presented a model approach for solving such problems. The eventual implication of the study is to present an insightful direction about concepts of the DL methods for forecasting electricity loads in the short-term period, especially to a potential researcher in quest of solving similar problems.
Źródło:
Applied Computer Science; 2019, 15, 4; 75-92
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies