Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Tytuł:
A Neural Network Approach for Predicting Production Volume of Biofuels in Poland
Zastosowanie sieci neuronowych do prognozowania wielkości produkcji biopaliw w Polsce
Autorzy:
Siuda, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2024082.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
artificial neural networks
biofuels
prediction
sztuczne sieci neuronowe
biopaliwa
predykcja
Opis:
This article focuses on the creation of artificial neural networks (ANN) and their use in predicting the volume of biofuel production in Poland on the basis of historical data. Artificial neural networks are extremely useful in predicting events in which it is difficult to find determinism and cause-effect relationships. For this purpose 30 artificial neural networks of different topology were created. The analysed artificial neural networks had: one or two layers, from 4 to 8 neurons on the first layer and 4 or 6 neurons on the second layer. Moreover, the effect of delayed inputs and the effect of learning set size on prediction quality were analysed. The quality of each structure was evaluated based on the coefficient of determination, mean error, and mean square error. The stability of prediction was evaluated based on the sample standard deviation of RMSE and MAE. All the presented ANN structures were simulated five times and the best individual results included in the tables. The best results were obtained for an artificial neural network with two layers, four neurons in each layer and one delay. Overall, the second layer increased the stability of the prediction. Streszczenie: W artykule skupiono się na tworzeniu sztucznych sieci neuronowych i ich wykorzystaniu do prognozowania wielkości produkcji biopaliw w Polsce na podstawie danych historycznych. Sztuczne sieci neuronowe są niezwykle przydatne w prognozowaniu zdarzeń, w których trudno doszukać się determinizmu i związków przyczynowo-skutkowych. W tym celu stworzono 30 sztucznych sieci neuronowych o różnej topologii. Analizowane
W artykule skupiono się na tworzeniu sztucznych sieci neuronowych i ich wykorzystaniu do prognozowania wielkości produkcji biopaliw w Polsce na podstawie danych historycznych. Sztuczne sieci neuronowe są niezwykle przydatne w prognozowaniu zdarzeń, w których trudno doszukać się determinizmu i związków przyczynowo-skutkowych. W tym celu stworzono 30 sztucznych sieci neuronowych o różnej topologii. Analizowane sztuczne sieci neuronowe miały: jedną lub dwie warstwy, od 4 do 8 neuronów w warstwie pierwszej oraz 4 lub 6 neuronów w warstwie drugiej. Ponadto przeanalizowano wpływ opóźnionych wejść oraz wpływ wielkości zbioru uczącego na jakość predykcji. Jakość każdej ze struktur oceniono na podstawie współczynnika determinacji, błędu średniego oraz błędu średniokwadratowego. Stabilność prognozowania była oceniana na podstawie odchylenia standardowego próby RMSE oraz MAE. Wszystkie przedstawione struktury ANN były symulowane pięciokrotnie, a najlepsze pojedyncze wyniki zamieszczono w tabelach. Najlepsze wyniki uzyskano dla sztucznej sieci neuronowej z dwiema warstwami, czterema neuronami w każdej warstwie i jednym opóźnieniem. Druga warstwa zwiększyła stabilność predykcji.
Źródło:
Ekonomia XXI Wieku; 2021, 24; 7-26
2353-8929
Pojawia się w:
Ekonomia XXI Wieku
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discrete Fractional Order Artificial Neural Network
Autorzy:
Sierociuk, D.
Sarwas, G.
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/386578.pdf
Data publikacji:
2011
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sztuczne sieci neuronowe
systemy nieliniowe
artificial neural networks
nonlinear systems
Opis:
In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.
Źródło:
Acta Mechanica et Automatica; 2011, 5, 2; 128-132
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network and artificial immune algorithms for the classification of medical data series
Sieci neuronowe i sieci immunologiczne dla rozpoznawania przypadków medycznych
Autorzy:
Wajs, W.
Powiązania:
https://bibliotekanauki.pl/articles/282174.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sztuczne sieci neuronowe
sieci immunologiczne
SVM
BPD
artificial neural network
immunological network
Opis:
This paper describes the applicability of artificial immune algorithms. Medical data series classification technique by Artificial Immune Algorithm is used for Neural Network Algorithm input data definitions. Artificial Immune Algorithms is created and trained for the purpose of Arterial Blood Gas parameters classification: pH, PaCO2, PaO2, HCO3. The main goal of this paper is to develop a artificial neural network technique for Arterial Blood Gases short-term prediction. The main question that is considered is how to predict some dynamic parameters that describe blood gases nature. A model of a physical system has an error associated with its predictions due to the dependences of the physical system's output on uncontrollable and unobservable quantities. The use of artificial methods creates the possibilities of obtaining some parameter values on the proper level of probability. This would provide a direct feedback to the clinical staff about the progress of a patient, the success of individual treatments, and quality of care as well as predicting blood gas value.
Dla rozpoznawania przypadków chorobowych, które są opisane numerycznymi danymi wykorzystano metody sztucznej inteligencji. W pracy wykorzystano dwie metody: metodę sztucznych sieci neuronowych oraz metodę sztucznych sieci immunologicznych. Przedstawiono wyniki uzyskane tymi metodami w odniesieniu do przypadków dysplazji oskrzelowo płucnej dla dzieci, których waga była poniżej 1500 g.
Źródło:
Automatyka / Automatics; 2012, 16, 1; 89-96
1429-3447
2353-0952
Pojawia się w:
Automatyka / Automatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The usage of neural networks to forecast for churn of telecommunications clients
Wykorzystanie sztucznych sieci neuronowych do prognozowania zjawiska churn wśród klientów usług telekomunikacyjnych
Autorzy:
Wojda, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/389805.pdf
Data publikacji:
2017
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
churn
artificial neural network
ANN
CLV
telecommunications
sztuczne sieci neuronowe
telekomunikacja
Opis:
This paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of leaving, while only 57% of those identified as in danger of leaving actually did so and stopped using the company's services.
W pracy przedstawiono próbę wykorzystania sztucznej sieci neuronowej do badania zjawiska churn wśród klientów operatora telekomunikacyjnego. Podjęto próbę stworzenia modelu danych opartego o całkowitą wartość klienta (CLV), a nie tylko jego aktywność. Do przeprowadzenia eksperymentów wykorzystana została wielowarstwowa sztuczna sieć neuronowa. Uzyskano 99% skuteczność identyfikowania klientów nie zagrożonych odejściem, natomiast tylko 57% klientów wskazanych jako zagrożonych odejściem w rzeczywistości zaprzestało korzystania z usług firmy.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2017, 20; 5-14
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A world according to artificial neural networks
Autorzy:
Schuster, A.
Powiązania:
https://bibliotekanauki.pl/articles/307811.pdf
Data publikacji:
2003
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
sztuczne sieci neuronowe
artificial neural networks
cognitive science
input space transformation
Opis:
This paper presents results from a preliminary study in the field of artificial neural networks (ANN). The overall aim of our work relates to the field of cognitive science. In this wider framework we try to investigate, reason about, and model cognitive processes in order to obtain a better understanding of the major processing device involved - the human brain. In terms of content this paper presents a novel ANN learning approach. Note that through-out the paper we assume supervised learning. In contrast to the classical ANN learning approach where an ANN algorithm alters an initial random weight assignment until a reasonable solution to a problem is obtained this approach does not alter the initial random weight assignment at all, but provides a solution to the problem by transforming the actual input data. The approach is applied to perceptrons and adalines and its quality is demonstrated on simple classification problems.
Źródło:
Journal of Telecommunications and Information Technology; 2003, 3; 102-107
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fatigue Life Predictions of Metal Matrix Composites Using Artificial Neural Networks
Przewidywania trwałości zmęczeniowej kompozytów metalowych przy użyciu sztucznych sieci neuronowych
Autorzy:
Uygur, I.
Cicek, A.
Toklu, E.
Kara, R.
Saridemir, S.
Powiązania:
https://bibliotekanauki.pl/articles/355098.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
MMCs
fatigue life prediction
artificial neural networks
przewidywania trwałości zmęczeniowej
sztuczne sieci neuronowe
Opis:
In this study, fatigue life predictions for the various metal matrix composites, R ratios, notch geometries, and different temperatures have been performed by using artificial neural networks (ANN) approach. Input parameters of the model comprise various materials (M), such as particle size and volume fraction of reinforcement, stress concentration factor (Kt), R ratio (R), peak stress (S), temperatures (T), whereas, output of the ANN model consist of number of failure cycles. ANN controller was trained with Levenberg-Marquardt (LM) learning algorithm. The tested actual data and predicted data were simulated by a computer program developed on MATLAB platform. It is shown that the model provides intimate fatigue life estimations compared with actual tested data.
Zastosowano sztuczne sieci neuronowe (ANN) do przewidywania trwałości zmęczeniowej dla różnych kompozytów metalowych, parametrów R, geometrii karbu, i różnych temperatur. Parametry wejściowe modelu obejmowały: różne materiały (M), o różnym rozmiarze cząstek i objętosci frakcji zbrojącej, współczynnik koncentracji naprężeń (Kt), stosunek parametru R (R), naprężenie szczytowe (S), temperaturę (T), natomiast dane wyjściowe składały się z liczby cykli awarii (SSN). Kontroler ANN był trenowany z użyciem algorytmu uczenia Levenberga-Marquardta (LM). Badane dane rzeczywiste i dane przewidywane symulowane były przez program komputerowy opracowany na platformie MATLAB. Wykazano, że model zapewnia oszacowanie trwałości zmęczeniowej bliską rzeczywistym danym badanym.
Źródło:
Archives of Metallurgy and Materials; 2014, 59, 1; 97-103
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of longitudinal precipitation of liquid indicator (LPLI) with the use of the artificial neural network (MLP, RBF) models
Estymacja wskaźnika opadu podłużnego rozpylonej cieczy (Wso) za pomocą sztucznych sieci neuronowych (MLP i RBF)
Autorzy:
Pentoś, K.
Cieniawska, B.
Łuczycka, D.
Powiązania:
https://bibliotekanauki.pl/articles/334681.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
spraying efficiency
artificial neural network
longitudinal precipitation
jakość opryskiwania
sztuczne sieci neuronowe
rozkład podłużny
Opis:
The study presents the results of the analysis of two artificial neural networks as models of relationships between longitudinal precipitation of liquid indicator and selected technical and technological factors of spraying process. The measurements were conducted in laboratory conditions. A wind tunnel was primary element in experimental set-up. Based on the results, it can be stated that MLP model (R2 = 0.908 for validation data set) was more accurate that RBF model (R2 = 0.837 for validation data set). The analysis of input variables’ contribution indicated that the LPLI is influenced the most by the air flow speed and the droplet size. Spray boom height and spray nozzle angle were less influencing parameters.
W pracy przedstawiono wyniki analizy dwóch modeli matematycznych zależności między wskaźnikiem opadu podłużnego rozpylonej cieczy a wybranymi technicznymi i technologicznymi parametrami procesu opryskiwania. Modele zbudowano wykorzystując sztuczne sieci neuronowe. Pomiary przeprowadzono w warunkach laboratoryjnych. Głównym elementem stanowiska badawczego był tunel aerodynamiczny. Na podstawie otrzymanych wyników można stwierdzić, że model oparty o sieć MLP (R2 = 0.908 dla zbioru walidacyjnego) charakteryzował się wyższą dokładnością niż model oparty o sieć RBF (R2 = 0.837 dla zbioru walidacyjnego). Analiza stopnia wpływu poszczególnych parametrów wejściowych modelu na jego wyjście wskazuje, że największy wpływ na Wso mają prędkość przepływu powietrza oraz wielkość kropli. Wysokość belki opryskowej oraz kąt nachylenia rozpylacza w znacznie mniejszym stopniu wpływają na Wso.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 1; 58-62
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gender recognition using neural networks and ASR techniques
Autorzy:
Sas, J.
Sas, A.
Powiązania:
https://bibliotekanauki.pl/articles/333972.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
artificial neural networks
speech recognition
gender recognition
sztuczne sieci neuronowe
rozpoznawanie mowy
rozpoznawanie płci
Opis:
The paper presents the simple technique of speaker gender recognition that uses MFCC features typically applied in automatic speech recognition. Artificial neural network is used as a classifier. The speech signal is first divided into 20 ms frames. For each frame, Mel-Frequency Cepstral Coefficients are extracted and the created feature vector is provided into a neural network classifier, which individually classifies each frame as male or female sample. Finally, the whole utterance is classified by selecting the class, for which the sum of corresponding neural network outputs is greater. The advantage of the method is that it can be easily combined with speech recognition, because both processes (gender recognition and speech recognition) are based on the same features. This way, no additional logic and no extra computational power is needed to extract features necessary for gender recognition. The method was experimentally evaluated using speech samples in English and in Polish. The comparison with other methods described in literature based on other feature extraction methods shows the superiority of the proposed approach, especially in cases where the recognition is carried out in noisy environment or using poor audio equipment.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 179-187
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling methods of predicting potato yield - examples and possibilities of application
Metody modelowania predykcji plonu ziemniaków – przykłady i możliwości zastosowania
Autorzy:
Piekutowska, M.
Niedbała, G.
Adamski, M.
Czechlowski, M.
Wojciechowski, T.
Czechowska-Kosacka, A.
Wójcik Oliveira, K.
Powiązania:
https://bibliotekanauki.pl/articles/337475.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
yield prediction
potato
artificial neural networks
regression
predykcja plonowania
ziemniak
sztuczne sieci neuronowe
regresja
Opis:
The purpose of the following work is to review the methods used in predicting plant yields, with particular emphasis on potato production. The article refers to the histological methods of estimating plant yields and prevailing trends: groundbased remote sensing, which is often associated with regression calculus, multiple regression, artificial intelligence and image analysis. There are also two popular models SUBSTOR and LINTUL-POTATO, which are the foundation for developing more and more accurate tools of potato yield estimation. There are many methods that allow to predict yields before the end of the growing season. The most important element in creating prediction models is choosing the appropriate number of independent variables that actually shape the yielding of potatoes. Timely and accurate prediction of crop yields improve the management of agricultural production as well as limit financial, quantitative and qualitative losses of crops.
Celem niniejszej pracy był przegląd metod wykorzystywanych w prognozowaniu plonów roślin ze szczególnym uwzględnieniem produkcji ziemniaka. W artykule nawiązano do historycznych sposobów szacowania plonów roślin oraz obecnie panujących trendów w predykcji: teledetekcji naziemnej, która często powiązana jest z rachunkiem regresyjnym, regresji wielorakiej, sztucznej inteligencji, analizie obrazów. Wspomniano także o dwóch popularnych modelach SUBSTOR i LINTULPOTATO, które stworzyły podwaliny do opracowywania coraz dokładniejszych narzędzi prognozujących plony ziemniaków. Wiele metod pozwala na predykcję plonów przed zakończeniem sezonu wegetacyjnego. Najistotniejszym elementem tworzenia modeli predykcyjnych jest dobór odpowiedniej liczby zmiennych niezależnych, które rzeczywiście kształtują plonowanie ziemniaków. Terminowe i dokładne prognozy plonów roślin uprawnych usprawniają zarządzanie produkcją rolniczą, pozwalają na ograniczanie strat finansowych, ilościowych i jakościowych plonów.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 176-180
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of artificial neural networks to predict railway switch durability
Autorzy:
Gibała, Ł.
Konieczny, J.
Powiązania:
https://bibliotekanauki.pl/articles/197192.pdf
Data publikacji:
2018
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
artificial neural networks
railway switch
maintenance
prediction
sztuczne sieci neuronowe
rozjazd szynowy
konserwacja
prognoza
Opis:
The article presents the possibility of applying artificial intelligence to forecast necessary repairs on ordinary railway switches. Railway switch data from Katowice and Katowice Szopienice Północne Stations were used to model neural structures. Using the prepared data set (changes in values of nominal dimensions in characteristic sections of 15 railway switches), we created three variants of railway switch classifications. Then, with the results, we determined the values of classifiers and the low mean absolute error, as well as compared charts of effectivity. It was calculated that the best solution by which to evaluate necessary repairs in railway switches was, in part, to repair the crossing nose. It was assessed that a structure with single output data was more effective for the accepted data.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2018, 101; 67-77
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of an effectiveness of artificial neural networks for various activation functions
Porównanie efektywności sztucznych sieci neuronowych dla różnych funkcji aktywacji
Autorzy:
Florek, Daniel
Miłosz, Marek
Powiązania:
https://bibliotekanauki.pl/articles/24083568.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
activation functions
artificial neural networks
artificial intelligence
funkcja aktywacji
sztuczne sieci neuronowe
sztuczna inteligencja
Opis:
Activation functions play an important role in artificial neural networks (ANNs) because they break the linearity in the data transformations that are performed by models. Thanks to the recent spike in interest around the topic of ANNs, new improvements to activation functions are emerging. The paper presents the results of research on the effectiveness of ANNs for ReLU, Leaky ReLU, ELU, and Swish activation functions. Four different data sets, and three different network architectures were used. Results show that Leaky ReLU, ELU and Swish functions work better in deep and more complex architectures which are to alleviate vanishing gradient and dead neurons problems. Neither of the three aforementioned functions comes ahead in accuracy in all used datasets, although Swish activation speeds up training considerably and ReLU is the fastest during prediction process.
Funkcje aktywacji, przełamując linową naturę transformacji zachodzących w sztucznych sieciach neuronowych (SSN), pozwalają na uczenie skomplikowanych wzorców występujących w danych wejściowych, np. w obrazach. Wzrost zain-teresowania wokół SSN skłonił naukowców do badań wokół różnolitych aktywacji, które mogą dać przewagę podczas uczenia jak i przewidywania, ostatecznie przyczyniając się do powstania nowych, interesujących rozwiązań. W artykule przedstawiono wyniki badań nad efektywnością SSN dla funkcji ReLU, Leaky ReLU, ELU oraz Swish, przy użyciu czterech zbiorów danych i trzech różnych architektur SSN. Wyniki pokazują, że funkcje Leaky ReLU, ELU i Swish lepiej sprawdzają się w głębokich i bardziej skomplikowanych architekturach, mając za zadanie zapobieganie proble-mom zanikającego gradientu (ang. Vanishing Gradient) i martwych neuronów (ang. Dead neurons). Żadna z trzech wyżej wymienionych funkcji nie ma przewagi w celności (ang. Accuracy), jednakże Swish znacznie przyspiesza ucze-nie SSN, a ReLU jest najszybsza w procesie przewidywania
Źródło:
Journal of Computer Sciences Institute; 2023, 26; 7--12
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial Neural Networks – Modern Systems for Safety Control
Autorzy:
Kosiński, R. A.
Kozłowski, C.
Powiązania:
https://bibliotekanauki.pl/articles/90104.pdf
Data publikacji:
1998
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
artificial neural networks
safety control
control system
kontrola bezpieczeństwa
sztuczne sieci neuronowe
system sterowania
Opis:
A short review of the applications of artificial neural networks in different fields of industry with a description of their main properties is made. Such systems have specific properties typical for the human brain, which can decide on the superiority of artificial neural networks over standard control systems. Basic types of such networks as well as their principles of operation and successful applications are described. The application of artificial neural networks in safety engineering is discussed with stress on their special properties, which are necessary in safety critical systems.
Źródło:
International Journal of Occupational Safety and Ergonomics; 1998, 4, 3; 317-332
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected applications of deepneural networks in skin lesion diagnostic
Wybrane zastosowania głębokich sieci neuronowych w diagnozie zmian skórnych
Autorzy:
Michalska-Ciekańska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/2070250.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
dermatoscopic images
neural networks
melanoma
skin lesions
obraz dermatoskopowy
sztuczne sieci neuronowe
zmiany skórne
Opis:
The article provides an overview of selected applications of deep neural networks in the diagnosis of skin lesions from human dermatoscopic images, including many dermatological diseases, including very dangerous malignant melanoma. The lesion segmentation process, features selectionand classification was described.Application examples of binary and multiclass classification are given.The described algorithms have been widely used in the diagnosis of skin lesions. The effectiveness, specificity, and accuracy of classifiers were compared and analyzed based on available datasets.
Artykuł zawiera przeglądwybranychzastosowań głębokich sieci neuronowych w diagnostyce zmian skórnych zobrazów dermatoskopowych człowieka z uwzględnieniem wielu choróbdermatologicznych, w tym bardzo niebezpiecznejz nich malignant melanoma. Został opisany processegmentacjizmiany, selekcji cech i klasyfikacji. Uwzględniono przykłady binarnej i wieloklasowej klasyfikacji. Opisane algorytmy znalazły szerokie zastosowanie w diagnostyce zmian skórnych.Porównano i przeanalizowanoskuteczność, specyficznośći dokładność klasyfikatorów w oparciu o dostępne zestawy danych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2021, 11, 4; 18--21
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych w analizie sygnałów elektrokardiograficznych
Using artificial neural networks for analysis of electrocardiographic signals
Autorzy:
Litwińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/261498.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
EKG
sztuczna inteligencja
sztuczne sieci neuronowe
Matlab
ECG
artificial intelligence
artificial neural networks
MATLAB
Opis:
Celem pracy było przebadanie możliwości zastosowania sztucznych sieci neuronowych do analizy i rozpoznawania sygnałów EKG. Artykuł zawiera przegląd zagadnień dotyczących EKG, pozyskiwania i interpretacji sygnałów oraz zastosowania sztucznych sieci neuronowych do diagnostyki. Znaczącym elementem pracy jest próba zaimplementowania w programie Matlab systemu rozróżniającego sygnały różnego typu.
The main goal of the work is to test the possibility of using artificial neural networks for analysis and recognition of ECG signals. The paper contains a review of issues related to ECG, acquisition and interpretation of signals, application of artificial neural networks in the diagnosis. A significant element is the attempt to implement the system for differentiating various types of signals using Matlab software.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2014, 20, 2; 80-94
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Toothed gear transmission diagnosis based on optimal features of vibration signal
Diagnozowanie przekładni zębatej w oparciu o optymalne cechy sygnału drgań
Autorzy:
Jedliński, Ł.
Jonak, J.
Powiązania:
https://bibliotekanauki.pl/articles/360050.pdf
Data publikacji:
2011
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
przekładnia stożkowa
selekcja cech
sztuczne sieci neuronowe
bevel gear
feature selection
artificial neural network
Opis:
The article presents a method for reducing amount of discriminants required to evaluate technical condition of an object and a trial of evaluating it using artificial neural networks as a way of increasing certainty of the obtained results.
W artykule przedstawiono metodę redukcji liczby dyskryminant wymaganych w ocenie stanu technicznego obiektu oraz próbę oceny stanu z użyciem sztucznych sieci neuronowych, jako środek zwiększenia pewności prognozy.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2011, 26 (98); 33-37
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies