Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Liouville" wg kryterium: Temat


Tytuł:
On a Generalized Sturm-Liouville Problem
Autorzy:
Andrzejczak, Grzegorz
Poreda, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/44445717.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Sturm-Liouville problem
Opis:
Basic results of our paper are devoted to a generalized Sturm-Liouville problem for an equation of the form \( -(p(t) y^′(t))^′+q(t)y(t) = F (t, y(\cdot)) \) with conditions $$ \begin{cases} \alpha_1 y(a) + \alpha_2 y^{'} (a) = 0 \\ \beta_1 y(b) + \beta_2 y^{'} (b) = 0 \end{cases} $$ where \( \alpha_1^2 + \alpha_2^2, \beta_1^2 + \beta_2^2 > 0 \), \( p(t) \ne 0 \) for \( t \in [a,b] \), \( q \in C([a,b]) \) and \( F \) is a continuous transformation from \( [a, b] \times C([a, b]) \) to \( C([a, b]) \). It is required that the Green’s function associated with this problem be nonnegative.
Źródło:
Acta Universitatis Lodziensis. Folia Mathematica; 2010, 17; 17-21
2450-7652
Pojawia się w:
Acta Universitatis Lodziensis. Folia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A version of non-Hamiltonian Liouville equation
Autorzy:
Rom, Celina
Powiązania:
https://bibliotekanauki.pl/articles/729554.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Liouville equation
invariant measure
Opis:
In this paper we give a version of the theorem on local integral invariants of systems of ordinary differential equations. We give, as an immediate conclusion of this theorem, a condition which guarantees existence of an invariant measure of local dynamical systems. Results of this type lead to the Liouville equation and have been frequently proved under various assumptions. Our method of the proof is simpler and more direct.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2014, 34, 1; 5-14
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/122736.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Shehu integral transform to solve fractional order Caputo type initial value problems
Autorzy:
Qureshi, Sania
Kumar, Prem
Powiązania:
https://bibliotekanauki.pl/articles/122809.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformata Laplace'a
całka Riemann-Liouville
Opis:
In the present research analysis, linear fractional order ordinary differential equations with some defined condition (s) have been solved under the Caputo differential operator having order α > 0 via the Shehu integral transform technique. In this regard, we have presented the proof of finding the Shehu transform for a classical nth order integral of a piecewise continuous with an exponential nt h order function which leads towards devising a theorem to yield exact analytical solutions of the problems under investigation. Varying fractional types of problems are solved whose exact solutions can be compared with solutions obtained through existing transformation techniques including Laplace and Natural transforms.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 75-83
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/1839810.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the use of Mohand integral transform for solving fractional-order classical Caputo differential equations
Autorzy:
Qureshi, Sania
Yusuf, Abdullahi
Aziz, Shaheen
Powiązania:
https://bibliotekanauki.pl/articles/1839755.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
initial value problem
kinetic reaction
Riemann-Liouville integral
transformata całkowa Mohanda
całka Mohanda
całka Riemanna-Liouville'a
reakcja kinetyczna
Opis:
In this research study, a newly devised integral transform called the Mohand transform has been used to find the exact solutions of fractional-order ordinary differential equations under the Caputo type operator. This transform technique has successfully been employed in existing literature to solve classical ordinary differential equations. Here, a few significant and practically-used differential equations of the fractional type, particularly related with kinetic reactions from chemical engineering, are under consideration for the possible outcomes via the Mohand integral transform. A new theorem has been proposed whose proof, provided in the present study, helped to get the exact solutions of the models under investigation. Upon comparison, the obtained results would agree with results produced by other existing well-known integral transforms including Laplace, Fourier, Mellin, Natural, Sumudu, Elzaki, Shehu and Aboodh.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 3; 99-109
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Liouville type theorem for solutions of linear partial differential equations with constant coefficients
Autorzy:
Kaneko, Akira
Powiązania:
https://bibliotekanauki.pl/articles/1207971.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
quasianalytic growth
ultradistribution
infra-exponential growth
Liouville theorem
Opis:
We discuss existence of global solutions of moderate growth to a linear partial differential equation with constant coefficients whose total symbol P(ξ) has the origin as its only real zero. It is well known that for such equations, global solutions tempered in the sense of Schwartz reduce to polynomials. This is a generalization of the classical Liouville theorem in the theory of functions. In our former work we showed that for infra-exponential growth the corresponding assertion is true if and only if the complex zeros of P(ξ) are absent in a strip at infinity. In this article we discuss the growth in between and present a characterization employing the space of ultradistributions corresponding to the growth.
Źródło:
Annales Polonici Mathematici; 2000, 74, 1; 143-159
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eigenvalue asymptotics for the Sturm-Liouville operator with potential having a strong local negative singularity
Autorzy:
Nursultanov, M.
Rozenblum, G.
Powiązania:
https://bibliotekanauki.pl/articles/255426.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Sturm-Liouville operator
singular potential
asymptotics of eigenvalues
Opis:
We find asymptotic formulas for the eigenvalues of the Sturm-Liouville operator on the finite interval, with potential having a strong negative singularity at one endpoint. This is the case of limit circle in H. Weyl sense. We establish that, unlike the case of an infinite interval, the asymptotics for positive eigenvalues does not depend on the potential and it is the same as in the regular case. The asymptotics of the negative eigenvalues may depend on the potential quite strongly, however there are always asymptotically fewer negative eigenvalues than positive ones. By unknown reasons this type of problems had not been studied previously.
Źródło:
Opuscula Mathematica; 2017, 37, 1; 109-139
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inversion of the Riemann-Liouville operator and its dual using wavelets
Autorzy:
Baccar, C.
Hamadi, N. B.
Herch, H.
Meherzi, F.
Powiązania:
https://bibliotekanauki.pl/articles/952838.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
inverse problem
Riemann-Liouville operator
Fourier transform
wavelets
Opis:
We define and study the generalized continuous wavelet transform associated with the Riemann-Liouville operator that we use to express the new inversion formulas of the Riemann-Liouville operator and its dual.
Źródło:
Opuscula Mathematica; 2015, 35, 6; 867-887
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Sturm-Liouville eigenvalue problem - a numerical solution using the control volume method
Autorzy:
Siedlecki, J.
Ciesielski, M
Błaszczyk, T.
Powiązania:
https://bibliotekanauki.pl/articles/122530.pdf
Data publikacji:
2016
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Sturm-Liouville problem
eigenvalues
numerical methods
Control Volume Method
problem Sturm-Liouville
wartości własne
metody numeryczne
metoda kontroli głośności
Opis:
The solution of the 1D Sturm-Liouville problem using the Control Volume Method is discussed. The second order linear differential equation with homogeneous boundary conditions is discretized and converted to the system of linear algebraic equations. The matrix associated with this system is tridiagonal and eigenvalues of this system are an approximation of the real eigenvalues of the boundary value problem. The numerical results of the eigenvalues for various cases and the experimental rate of convergence are presented.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2016, 15, 2; 127-136
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feedback stabilization of one-dimensional parabolic systems related to formations
Autorzy:
Sano, H.
Powiązania:
https://bibliotekanauki.pl/articles/201667.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Sturm-Liouville operator
parabolic system
unbounded output operator
stabilization
residual mode filter
operator Sturm-Liouville
system paraboliczny
nieograniczony operator wyjścia
stabilizacja
Opis:
This paper is concerned with the problem of stabilizing one-dimensional parabolic systems related to formations by using finitedimensional controllers of a modal type. The parabolic system is described by a Sturm-Liouville operator, and the boundary condition is different from any of Dirichlet type, Neumann type, and Robin type, since it contains the time derivative of boundary values. In this paper, it is shown that the system is formulated as an evolution equation with unbounded output operator in a Hilbert space, and further that it is stabilized by using an RMF (residual mode filter)-based controller which is of finite-dimension. A numerical simulation result is also given to demonstrate the validity of the finite-dimensional controller.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 1; 295-303
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems
Autorzy:
Denton, Z.
Ramirez, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/255901.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Riemann Liouville derivative
integro-differential equation
monotone method
Opis:
In this work we investigate integro-differential initial value problems with Riemann Liouville fractional derivatives where the forcing function is a sum of an increasing function and a decreasing function. We will apply the method of lower and upper solutions and develop two monotone iterative techniques by constructing two sequences that converge uniformly and monotonically to minimal and maximal solutions. In the first theorem we will construct two natural sequences and in the second theorem we will construct two intertwined sequences. Finally, we illustrate our results with an example.
Źródło:
Opuscula Mathematica; 2017, 37, 5; 705-724
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some framed \(f\)-structures on transversally Finsler foliations
Autorzy:
Ida, Cristian
Powiązania:
https://bibliotekanauki.pl/articles/747021.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Transversally Finsler foliation
Liouville distribution
framed f-structures
Opis:
Some problems concerning to Liouville distribution and framed \(f\)-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed \(f(3,\varepsilon)\)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2011, 65, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical Evaluation of Fractional Differ-Integral of Some Elementary Functions via Inverse Transformation
Autorzy:
Ostalczyk, P.
Brzeziński, D.
Powiązania:
https://bibliotekanauki.pl/articles/386574.pdf
Data publikacji:
2011
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
formuła Riemanna-Liouvilla
transformacja
Riemann-Liouville formula
inverse transformation
Opis:
This paper presents methods of calculating fractional differ-integrals numerically. We discuss extensively the pros and cons of applying the Riemann-Liouville formula, as well as direct approach in form of The Grünwald-Letnikov method. We take closer look at the singularity, which appears when using classical form of Riemann-Liouville formula. To calculate Riemann-Liouville differ-integral we use very well-known techniques like The Newton-Cotes Midpoint Rule. We also use two Gauss formulas. By implementing transformation of the core integrand of Riemann-Liouville formula (we called it “the inverse transformation”), we would like to point the possible way of reducing errors when calculating it. The core of this paper is the subject of reducing the absolute error when calculating Riemann-Liouville differ-integrals of some elementary functions; we use our own C++ programs to calculate them and compare obtained results of all methods with, where possible, exact values, where not – with values obtained using excellent method of integration incorporated in Mathematica. We will not discuss complexity of numerical calculations. We will focus solely on minimization of the absolute errors.
Źródło:
Acta Mechanica et Automatica; 2011, 5, 2; 86-95
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time-optimal control of linear fractional systems with variable coefficients
Autorzy:
Matychyn, Ivan
Onyshchenko, Viktoriia
Powiązania:
https://bibliotekanauki.pl/articles/2055161.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fractional calculus
Riemann-Liouville derivative
variable coefficients
optimal control
rachunek ułamkowy
pochodna ułamkowa Riemanna-Liouville'a
współczynnik zmienny
sterowanie optymalne
Opis:
Linear systems described by fractional differential equations (FDEs) with variable coefficients involving Riemann–Liouville and Caputo derivatives are examined in the paper. For these systems, a solution of the initial-value problem is derived in terms of the generalized Peano–Baker series and a time-optimal control problem is formulated. The optimal control problem is treated from the convex-analytical viewpoint. Necessary and sufficient conditions for time-optimal control similar to that of Pontryagin’s maximum principle are obtained. Theoretical results are supported by examples.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 375--386
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies