Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chmury modelowanie" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Modeling BIM objects from point clouds. Examples
Modelowanie obiektów BIM z chmur punktów. Przykłady
Autorzy:
Kotarska-Lewandowska, Bożena
Powiązania:
https://bibliotekanauki.pl/articles/119201.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
laser scanning
point clouds
3D modeling
BIM
skanowanie laserowe
chmury punktów
modelowanie 3d
Opis:
The article presents several ways to obtain BIM (Building Information Modeling) models from point clouds using standard commands in Revit 2018. In Revit geometric forms are possible to obtain in project, family or conceptual environments. Efficient modeling requires knowledge of methods of creating families and components in these environments and ways to combine them. Modeling methods with system and loadable families are presented, however, the main part of the article is modeling of individual forms as In-Place Model, or Conceptual Mass. Drawing model lines on the work plane is facilitated due to a snapping feature in Revit. Point clouds must be limited to allow observation near the work plane. Cloud modeling is labor intensive, therefore knowledge of various techniques is particularly important. In creating reusable BIM objects adding parameterization to already created models has a positive effect on the efficiency of the entire process. Making models from point clouds, even at the initial stage, requires good knowledge of the software, but spatial imagination and knowledge of spatial relations gained from descriptive geometry classes become an asset. Modeling from point clouds can be an interesting alternative to other courses for future engineers in the building sector.
W artykule przedstawiono kilka sposobów uzyskania modeli BIM z chmury punktów za pomocą standardowych poleceń programu Revit 2018. Zaproponowany zestaw przykładów modelowania z chmur punktów może być ciekawą alternatywą na kursach dla przyszłych inżynierów w sektorze budownictwa. Revit jest rozbudowanym programem, w którym modelowanie form geometrycznych jest możliwe w trzech środowiskach: projektu, rodziny, bryły koncepcyjnej. W sprawnym modelowaniu potrzebna jest wiedza do jakich przypadków wykorzystywać te środowiska, jak w nich działać i je łączyć. W budowaniu modelu BIM obiektu budowlanego z chmury punktów dla elementów nadrzędnych wykorzystuje się rodziny systemowe (ang. System families) takie jak ściany, stropy, dachy. Natomiast modelowanie w środowisku rodzin jest w pewien sposób ograniczone ponieważ w programie Revit 2018 nie jest możliwe bezpośrednie wczytanie chmur do rodzin. Dlatego w modelowaniu rodzin wczytywalnych (ang. Loadable families) takich jak np. okna, trzeba przenieść linie charakterystyczne budowanej formy geometrycznej obiektu z chmury punktów widocznej w projekcie do środowiska rodziny. Jak opisano w artykule zapewnia to eksport linii modelu do formatu dwg, a następnie wczytanie pliku w nowej rodzinie. Trzeba jednak stwierdzić, że ta pośrednia metoda zmniejsza efektywność modelowania tego typu elementów. Chmury punktów stanowią reprezentację rzeczywistego obiektu, często o nietypowych kształtach, zdeformowanego, nieidealnego. Powoduje to konieczność utworzenia unikatowych, indywidualnych form. Sposobem na ich uzyskanie jest model lokalny (ang. Model In-Place). Jest on tworzony w projekcie, a zatem w bezpośrednim sąsiedztwie chmury punktów. W artykule opisano metodę tworzenia z modelu lokalnego rodzin i ich parametryzację, która powoduje, ze określone wymiary obiektu są edytowalne. Taki zabieg tworzy możliwość wielokrotnego wykorzystania raz utworzonego modelu i jego modyfikacji wewnątrz projektu, ale również w innych projektach. Z kolei bardziej złożone geometrie wynikające z układu punktów w chmurze mogą być utworzone jako lokalna bryła koncepcyjna (ang. In-Place Mass). Ponieważ bryła ta jest tworzona w środowisku projektu można bezpośrednio dowiązywać się do punków w chmurze. Sposób modelowania i środowisko bryły koncepcyjnej jest odmienne od modelu lokalnego i może dawać dużo większą dowolność form. Początkowo utworzone obiekty lokalnej bryły koncepcyjnej mogą być dalej zmieniane poprzez dodawanie krawędzi i przekrojów oraz modyfikacje więzów. W efekcie końcowym powstają złożone powierzchnie tzw. free form. Fragmenty tych powierzchni mogą być następnie przekształcane w elementy strukturalne budynku, takie jak dach, ściana, strop. Ponieważ modelowanie w chmurach jest pracochłonne dlatego szczególnego znaczenia nabiera znajomość różnych podejść do modelowania a także dodawanie parametryzacji do już utworzonych modeli, co wpływa dodatnio na efektywność całego procesu. Wykonanie modeli z chmur punktów nawet na początkowym poziomie wymaga dobrej znajomości programu, ale dodatkowo niezbędna staje się wiedza w zakresie budowania form i współzależności relacji przestrzennych wyniesiona z zajęć geometrii wykreślnej oraz wyćwiczona na tych zajęciach wyobraźnia przestrzenna.
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2019, 32; 55-64
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From a point cloud to a 3D model – an exercise for users of AutoCAD and revit
Tworzenie modeli 3D z chmury punktów
Autorzy:
Kotarska-Lewandowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/118824.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
laser scanning
point clouds
3D modelling
BIM
reverse engineering
skanowanie laserowe
chmury punktów
modelowanie 3D
inżynieria wsteczna
Opis:
At the Faculty of Civil and Environmental Engineering students learn about various methods of presenting spatial forms - from descriptive geometry to 3D modelling. Both educational and commercial 3D software are continually refined and enriched with everimproving options, this applies also to commonly used Autodesk products such as AutoCAD or Revit. One of these novelties supporting building information modelling is the option to work on point clouds that support the design process by providing the actual context. After attaching a point cloud to a model, it can be used as a drawing aid, viewed in a different mode, etc. Considering the fact that the above-mentioned programs are already used by students in early semesters and that they are a basic tool in the office, it is worth using a new tool in a 3D CAD course. The article presents a basic exercise that may prove to be an interesting alternative to a modelling course as it is used to practice basic skills such as rotation, change of reference, etc. In addition, students gain proficiency in transferring data between a few required programs. This task seems to favour the integration of functional skills into several programs but at a fundamental level and can be a great topic for group projects. The task described in this article required the preparation of a point cloud that was obtained using a Leica P30 laser scanner and then pre-processed in Cyclone software.
Obecnie można zaobserwować wpływ nowych technologii na zmieniający się warsztat inżyniera projektanta w zakresie wytwarzania dokumentacji technicznej. Rozwój technologii BIM służących do wszechstronnego digitalizowania informacji o obiekcie oraz równolegle skaningu laserowego powoduje, że wieloaspektowe działania w gospodarce budowlanej przenoszą się do środowiska cyfrowego. W wielu krajach, w tym w Polsce potrzebne staje się dostosowanie norm i certyfikatów dotyczących dokumentacji budowlanych, ale kierunek transformacji jest już znany i wraz z nim następuje dostosowanie środowiska edukacyjnego. W sektorze budownictwa intensywny rozwój można zauważyć w dziedzinie inżynierii odwrotnej czyli wprowadzenia obiektów rzeczywistych do przestrzeni wirtualnej w celu dalszego przetwarzania. Zadanie to może być realizowane za pomocą urządzeń do mierzenia zdalnego, np. za pomocą skanerów laserowych, których zaletą jest zbieranie dużej liczby różnorodnych informacji o wysokiej jakości w bardzo krótkim czasie. Ponieważ technologie skaningu są coraz szerzej wykorzystywane do prac diagnostyczno-inwentaryzacyjnych, dlatego też w praktyce inżynierskiej pojawiać się będzie coraz częściej konieczność działania w chmurach punktów. W referacie przedstawiono propozycję tematu ćwiczenia dla studentów kierunków budowlanych w ramach zajęć dotyczących modelowania 3D. Zadanie polega na utworzeniu modelu trójwymiarowego na podstawie pomiaru uzyskanego skanerem laserowym Leica P30. Ze względu na maksymalną liczbę punktów w chmurze w prezentowanych programach pliki wyjściowe muszą być odpowiednio wyczyszczone i zmniejszone. Artykuł przedstawia zastosowanie wybranych narzędzi do tworzenia geometrii pod kątem przygotowywanego ćwiczenia w popularnych programach AutoCAD i Revit.
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2017, 30; 17-21
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Comparison of Accuracy between Point Clouds from Convergent Images and Spherical Panoramas
Analiza porównawcza chmur punktów wygenerowanych na podstawie zdjęć zbieżnych i panorama
Autorzy:
Szlapińska, S.
Tokarczyk, R.
Powiązania:
https://bibliotekanauki.pl/articles/385943.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Agisoft
zdjęcia zbieżne
modelowanie na podstawie zdjęć
chmury punktów
panoramy sferyczne
convergent photos
image-based modeling
point clouds
spherical panoramas
Opis:
W pracy przedstawiono wyniki analizy porównawczej chmur punktów opracowanych na podstawie zdjęć zbieżnych oraz panoram sferycznych powstałych ze zdjęć wykonywanych z tego samego środka rzutów. Porównywano wyniki opracowania dla sieci zdjęć zbieżnych i sieci panoram pod względem dokładności, gęstości chmury i ekonomiczności pomiaru. Prace badawcze prowadzono na polu testowym założonym w dużym wnętrzu budynku. Zdjęcia zbieżne oraz panoramy wykonano lustrzanką Canon EOS 5D. Do wykonania panoram użyto głowicy GIGA PAN Epic Pro. Do obliczeń i utworzenia modeli zastosowano program Agisoft PhotoScan, ponieważ ma on funkcję automatycznej orientacji oraz dopasowania obrazów w przypadku panoram sferycznych. Porównanie dokładności chmur punktów, z których odczytywano współrzędne punktów kontrolnych, wykazało, że dokładność modelu utworzonego ze zdjęć zbieżnych wynosi 19 mm, a dokładność modelu z panoram – 73 mm. Ponieważ gorszy wynik dokładności chmury z panoram może być spowodowany jej znacznie mniejszą gęstością, sprawdzono również wpływ dokładności ich wykonania przez analityczne wyznaczenie współrzędnych punktów kontrolnych na etapie orientacji zdjęć i panoram. Przeprowadzona analiza potwierdziła, że model ze zdjęć zbieżnych cechuje się wyższą dokładnością (20 mm) niż model z panoram (36 mm).
The work includes the results of a comparison of point clouds made on the basis of convergent images and spherical panoramas from the photos taken in the same center of projection. The results were compared for the group of convergent photos and panoramas in relation to accuracy, cloud density and measurement economics. The research was carried out on the testfield inside a large building. The convergent photos and panoramas were taken using the Canon EOS 5D camera. The robotic camera mount GIGA PAN Epic Pro was used to make panoramas. For calculations and building models the Agisoft PhotoScan application was selected, as it has a function of automatic orientation and adjusting photos. The comparison of point cloud accuracy, from which the control point coordinates were taken, has shown that the accuracy of the model made from the photos was 19 mm, and the accuracy of panorama model was 73 mm. As the worse result of panorama cloud accuracy may be caused by much lower density, the effect on their accuracy was also checked by making an analytical determination of control point coordinates at the stage of photo and panorama orientation. The analysis has proven that the model made of convergent photos is more accurate (20 mm) than the model made of panoramas (36 mm).
Źródło:
Geomatics and Environmental Engineering; 2017, 11, 2; 63-72
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using lidar point clouds in determination of the scots pine stands spatial structure meaning in the conservation of lichen communities in "Bory Tucholskie" National Park
Wykorzystanie danych Lidar do określenia znaczenia struktury przestrzennej drzewostanów sosnowych w zachowaniu borów chrobotkowych na terenie Parku Narodowego „Bory Tucholskie”
Autorzy:
Wężyk, Piotr
Hawryło, Paweł
Szostak, Marta
Zięba-Kulawik, Karolina
Winczek, Monika
Siedlarczyk, Ewa
Kurzawiński, Adam
Rydzyk, Justyna
Kmiecik, Jowita
Gilewski, Wojciech
Szparadowska, Monika
Warchoł, Artur
Turowska, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/1048784.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
LiDAR
point clouds
unmanned laser scanning
terrestrial laser scanning
Bory Tucholskie National Park
UAV
chmury punktów
bezzałogowe skanowanie laserowe
naziemne skanowanie laserowe
modelowanie 3D
Park Narodowy Bory Tucholskie
Opis:
Celem badań realizowanych w roku 2018 finansowanych z Funduszu Leśnego, była analiza cech biometrycznych i parametrów drzewostanów sosnowych na terenie Parku Narodowego "Bory Tucholskie" (PNBT), w których w 2017 roku zainicjowano program ochronny czynnej borów chrobotkowych. Analizy środowiskowe prowadzono w odniesieniu do wybranych cech biometrycznych drzew i drzewostanów z wykorzystaniem chmur punktów ze skanowania laserowego (LiDAR), w tym bezzałogowych platform ULS (RiCopter + VUX-1 RIEGL) oraz naziemnych skanerów TLS (FARO FOCUS 3D; X130). Dzięki zastosowaniu technologii LiDAR, w precyzyjny sposób opisano strukturę drzewostanów sosnowych poprzez szeregi statystyk opisowych charakteryzujących strukturę przestrzenną 3D roślinności. Wykorzystując Model Koron Drzew (CHM) dokonano analizy objętości koron drzew oraz objętości przestrzeni podokapowej. Dla analizowanych wydzieleń przeprowadzono analizy solarne GIS pod kątem sumarycznej energii słonecznej docierającej do okapu drzewostanu oraz bezpośrednio do poziomu gruntu co ma duże znaczenie dla ochrony czynnej chrobotków. Dla celów projektu pozyskano także zdjęcia wielospektralne przy wykorzystaniu specjalistycznej kamery RedEdge-M (MiceSense) zamontowanej na platformie BSP wielowirnikowca Typhoon H520 (Yuneec). Przeprowadzono też naloty z kamerą termalną w celu detekcji miejsc z wysoką temperaturą na gruncie, odpowiednich na pionierskich gatunków porostów. Dla wydzieleń leśnych obliczono także wskaźniki roślinne: NDVI, NDRE, GNDVI oraz GRVI. Dane pozyskane w 2017 oraz 2018 roku były podstawą analiz przestrzenno-czasowych 4-D zmian w drzewostanach jakie miały związek z usunięciem części drzew oraz warstwy organicznej (ścioła, warstwa mszaków).
The aim of the research carried out in 2018 and financed by the Forest Fund was the analysis of biometric features and parameters of pine stands in the area of the "Bory Tucholskie" National Park (PNBT), where a program of active protection of lichen was initiated in 2017. Environmental analyses were conducted in relation to selected biometric features of trees and stands using laser scanning (LiDAR), including ULS (Unmanned Laser Scanning; RIEGL VUX-1) and TLS (Terrestrial Laser Scanning; FARO FOCUS 3D; X130). Thanks to the application of LiDAR technology, the structure of pine stands was precisely determined by means of a series of descriptive statistics characterizing the 3D spatial structure of vegetation. Using the Trees Crown Model (CHM), the analysis of the volume of tree crowns and the volume of space under canopy was performed. For the analysed sub-compartments, GIS solar analyses were carried out for the solar energy reaching the canopy and the ground level due to active protection of lichen. Multispectral photos were obtained using a specialized RedEdge-M camera (MicaSense) mounted on the UAV multi rotor platform Typhoon H520 (Yuneec). Flights with a thermal camera were also performed in order to detect places on the ground with high temperature. Plant indices: NDVI, NDRE, GNDVI and GRVI were also calculated for sub-compartments. The data obtained in 2017 and 2018 were the basis for spatial and temporal analyses of 4-D changes in stands which were related to the removal of some trees and organic layer (litter, moss layer).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2019, 31; 85-103
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies