Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "natural numbers" wg kryterium: Wszystkie pola


Tytuł:
On ratio sets of natural numbers
Autorzy:
Šalát, T.
Powiązania:
https://bibliotekanauki.pl/articles/1394135.pdf
Data publikacji:
1969
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Źródło:
Acta Arithmetica; 1968-1969, 15, 3; 273-278
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Likeℕ’s – a point of view on natural numbers
Autorzy:
Tutaj, Edward
Powiązania:
https://bibliotekanauki.pl/articles/744636.pdf
Data publikacji:
2017-12-01
Wydawca:
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Tematy:
Beurling numbers
distribution of prime numbers
Opis:
We define and study some simple structures which we call likens and which are conceptually near to both sets of natural numbers, i.e. ℕ with addition and ℕ* = ℕ \ {0} with multiplication. It appears that there are many different likens, which makes it possible to look on usual natural numbers from a more general point of view. In particular, we show that ℕ and ℕ* are related to some functionals on the space of likens. A similar idea is known for a long time as the Beurling generalized numbers. Our approach may be considered as a little more natural and more general, since it admits the finitely generated likens.
Źródło:
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica; 2017, 16
2300-133X
Pojawia się w:
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical induction in proving of theorems about natural numbers divisibility
Indukcja matematyczna w dowodzeniu twierdzeń o podzielności liczb naturalnych
Autorzy:
Żywuszko, K.
Czajkowski, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/135988.pdf
Data publikacji:
2013
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
natural numbers
divisibility
proof
mathematical induction
liczby naturalne
podzielność
dowód
indukcja matematyczna
Opis:
Introduction and aims: This paper presents the concept of the division of mathematical expressions with natural variable related to the problem of divisibility. The paper shows some proofs of selected problem. The main aim of this paper is to show a few proofs of theorems about divisibility of expressions by using the method of mathematical induction. Material and methods: In this paper have been solved examples from different sources. Considered problems contain: only polynomials, the sum of powers of different bases (and constant as a component), the sum of the products of powers with different bases (and constant as a component), the sum of the powers and polynomials, the sum of the products of powers and polynomials, the sum containing the power of (-1), Fibonacci sequence, the expression containing a power of the power and problems containing power in divider. In the paper has been used the method of mathematical induction. Results: It has been shown 16 proofs of problems by using mathematical induction. In some examples have been used the additional lemmas which complete the main proof. Conclusion: Using some properties of divisibility theorems and the theorem about mathematical induction allow to show proofs which refer to the divisibility by natural number of various mathematical expressions with natural variable n.
Wstęp i cele: W pracy przedstawiono koncepcję podziału wyrażeń matematycznych ze zmienną naturalną odnoszących się do problemu podzielności a także przedstawiono dowody wybranych zadań. Głównym celem pracy jest pokazanie sposobu dowodzenia twierdzeń o podzielności wyrażeń przy zastosowaniu metody indukcji matematycznej. Materiał i metody: W pracy rozwiązano przykłady z różnych źródeł. Rozważono zadania zawierające: tylko wielomiany, sumy potęg o różnych podstawach (i stałą w roli składnika), sumy iloczynów potęg o różnych podstawach (i stałą w roli składnika), sumy potęg i wielomianów, sumy iloczynów potęg i wielomianów, sumy zawierające potęgę (-1), ciąg Fibonacciego, wyrażenia zawierające potęgę potęgi oraz zadania zawierające potęgę w dzielniku. Zastosowano metodę indukcji matematycznej. Wyniki: Przeprowadzono dowody 16 przykładów przy użyciu indukcji matematycznej. W niektórych przykładach zastosowano dodatkowo dowody lematów, które uzupełniają całość dowodu głównego. Wniosek: Korzystanie z pewnych właściwości twierdzeń o podzielności i twierdzenia o indukcji matematycznej pozwala pokazać dowody, które odnoszą się do podzielności przez liczby naturalne różnych wyrażeń matematycznych ze zmienną naturalną.
Źródło:
Problemy Nauk Stosowanych; 2013, 1; 101-116
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Number three as a law of science. In praise of number three
Autorzy:
Maciuk, Arkadiusz
Smoluk, Antoni
Powiązania:
https://bibliotekanauki.pl/articles/421393.pdf
Data publikacji:
2016
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
perception of natural numbers
three-valued logic
test exams
Opis:
Comprehension of nature, in the simplest and quickest fashion, boils down to the differentiation of three states. This is probably related to the psychological fact that the human mind grasps only natural numbers from zero to three and the other numbers it calculates. We live in a divalent world created by Aristotle. However not everything can be reduced to two categories: “yes” and “no”, because Nature is abundant. The principle of continuity which facilitates understanding is in natural conflict with the binary description of the world. Ever since the times of Aristotle it has been normal to use in science a description of the world that is reduced to two states: “true” and “false”. In nature it is more obvious to distinguish three states: low-medium-high or negative-neutral-positive, etc. Man embraces at a single glance sets of three elements at most, and more numerous sets are divided into parts. Binary logic may have a negative impact on the process of teaching and examinations, especially if the tests are used.
Źródło:
Didactics of Mathematics; 2016, 13(17); 25-34
1733-7941
Pojawia się w:
Didactics of Mathematics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies