Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "distinguishing number" wg kryterium: Wszystkie pola


Wyświetlanie 1-13 z 13
Tytuł:
The list Distinguishing Number Equals the Distinguishing Number for Interval Graphs
Autorzy:
Immel, Poppy
Wenger, Paul S.
Powiązania:
https://bibliotekanauki.pl/articles/31342143.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distinguishing
distinguishing number
list distinguishing
interval graph
Opis:
A distinguishing coloring of a graph G is a coloring of the vertices so that every nontrivial automorphism of G maps some vertex to a vertex with a different color. The distinguishing number of G is the minimum k such that G has a distinguishing coloring where each vertex is assigned a color from {1, . . ., k}. A list assignment to G is an assignment L = {L(v)}v∈V (G) of lists of colors to the vertices of G. A distinguishing L-coloring of G is a distinguishing coloring of G where the color of each vertex v comes from L(v). The list distinguishing number of G is the minimum k such that every list assignment to G in which |L(v)| = k for all v ∈ V (G) yields a distinguishing L-coloring of G. We prove that if G is an interval graph, then its distinguishing number and list distinguishing number are equal.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 165-174
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trees with Distinguishing Index Equal Distinguishing Number Plus One
Autorzy:
Alikhani, Saeid
Klavžar, Sandi
Lehner, Florian
Soltani, Samaneh
Powiązania:
https://bibliotekanauki.pl/articles/31804165.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
automorphism group
distinguishing index
distinguishing number
tree
unicyclic graph
Opis:
The distinguishing number (index) D(G) (D′ (G)) of a graph G is the least integer d such that G has an vertex (edge) labeling with d labels that is preserved only by the trivial automorphism. It is known that for every graph G we have D′ (G) ≤ D(G) + 1. In this note we characterize finite trees for which this inequality is sharp. We also show that if G is a connected unicyclic graph, then D′ (G) = D(G).
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 875-884
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Distinguishing Number and Distinguishing Index of the Lexicographic Product of Two Graphs
Autorzy:
Alikhani, Saeid
Soltani, Samaneh
Powiązania:
https://bibliotekanauki.pl/articles/31342273.pdf
Data publikacji:
2018-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distinguishing index
distinguishing number
lexicographic
Opis:
The distinguishing number (index) D(G) (D′(G)) of a graph G is the least integer d such that G has a vertex labeling (edge labeling) with d labels that is preserved only by the trivial automorphism. The lexicographic product of two graphs G and H, G[H] can be obtained from G by substituting a copy Hu of H for every vertex u of G and then joining all vertices of Hu with all vertices of Hv if uv ∈ E(G). In this paper we obtain some sharp bounds for the distinguishing number and the distinguishing index of the lexicographic product of two graphs. As consequences, we prove that if G is a connected graph with Aut(G[G]) = Aut(G)[Aut(G)], then for every natural number k, D(G) ≤ D(Gk) ≤ D(G) + k − 1 and all lexicographic powers of G, Gk (k ≥ 2) can be distinguished by two edge labels, where Gk = G[G[. . . ]].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 3; 853-865
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On distinguishing and distinguishing chromatic numbers of hypercubes
Autorzy:
Klöckl, Werner
Powiązania:
https://bibliotekanauki.pl/articles/743050.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distinguishing number
distinguishing chromatic number
hypercube
weak Cartesian product
Opis:
The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number $χ_D(G)$ of G.
Extending these concepts to infinite graphs we prove that $D(Q_ℵ₀) = 2$ and $χ_D(Q_ℵ₀) = 3$, where $Q_ℵ₀$ denotes the hypercube of countable dimension. We also show that $χ_D(Q₄) = 4$, thereby completing the investigation of finite hypercubes with respect to $χ_D$.
Our results extend work on finite graphs by Bogstad and Cowen on the distinguishing number and Choi, Hartke and Kaul on the distinguishing chromatic number.
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 3; 419-429
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Distinguishing Cartesian Products of Countable Graphs
Autorzy:
Estaji, Ehsan
Imrich, Wilfried
Kalinowski, Rafał
Pilśniak, Monika
Tucker, Thomas
Powiązania:
https://bibliotekanauki.pl/articles/31342144.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex coloring
distinguishing number
automorphisms
infinite graphs
Cartesian and weak Cartesian product
Opis:
The distinguishing number D(G) of a graph G is the minimum number of colors needed to color the vertices of G such that the coloring is preserved only by the trivial automorphism. In this paper we improve results about the distinguishing number of Cartesian products of finite and infinite graphs by removing restrictions to prime or relatively prime factors.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 155-164
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Distinguishing graphs by the number of homomorphisms
Autorzy:
Fisk, Steve
Powiązania:
https://bibliotekanauki.pl/articles/971917.pdf
Data publikacji:
1995
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph homomorphism
chromatic number
Opis:
A homomorphism from one graph to another is a map that sends vertices to vertices and edges to edges. We denote the number of homomorphisms from G to H by |G → H|. If is a collection of graphs, we say that distinguishes graphs G and H if there is some member X of such that |G → X | ≠ |H → X|. is a distinguishing family if it distinguishes all pairs of graphs.
We show that various collections of graphs are a distinguishing family.
Źródło:
Discussiones Mathematicae Graph Theory; 1995, 15, 1; 73-75
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neighbor Sum Distinguishing Total Chromatic Number of Planar Graphs without 5-Cycles
Autorzy:
Zhao, Xue
Xu, Chang-Qing
Powiązania:
https://bibliotekanauki.pl/articles/32083807.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
neighbor sum distinguishing total coloring
discharging method
planar graph
Opis:
For a given graph $ G = (V (G), E(G)) $, a proper total coloring $ \phi : V (G) \cup E(G) $ $ \rightarrow {1, 2, . . ., k} $ is neighbor sum distinguishing if $ f(u) \ne f(v) $ for each edge $ uv \in E(G) $, where $ f(v) = \Sigma_{ uv \in E(G) } $ $ \phi (uv) + \phi (v) $, $ v \in V (G) $. The smallest integer $k$ in such a coloring of $G$ is the neighbor sum distinguishing total chromatic number, denoted by $ \chi_\Sigma^{''} (G) $. Pilśniak and Woźniak first introduced this coloring and conjectured that $ \chi_\Sigma^{''}(G) \le \Delta (G)+3 $ for any graph with maximum degree $ \Delta (G) $. In this paper, by using the discharging method, we prove that for any planar graph $G$ without 5-cycles, $ \chi_\Sigma^{''} (G) \le \text{max} \{ \Delta (G)+2, 10 \} $. The bound $ \Delta (G) + 2 $ is sharp. Furthermore, we get the exact value of $ \chi_\Sigma^{''} (G) $ if $ \Delta (G) \ge 9 $.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 243-253
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vertex-Distinguishing IE-Total Colorings of Complete Bipartite Graphs Km,N(m < n)
Autorzy:
Chen, Xiang’en
Gao, Yuping
Yao, Bing
Powiązania:
https://bibliotekanauki.pl/articles/30146641.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
complete bipartite graphs
IE-total coloring
vertex-distinguishing IE-total coloring
vertex-distinguishing IE-total chromatic number
Opis:
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. VDIET colorings of complete bipartite graphs Km,n(m < n) are discussed in this paper. Particularly, the VDIET chromatic numbers of Km,n(1 ≤ m ≤ 7, m < n) as well as complete graphs Kn are obtained.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 289-306
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The set chromatic number of a graph
Autorzy:
Chartrand, Gary
Okamoto, Futaba
Rasmussen, Craig
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/744459.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
neighbor-distinguishing coloring
set coloring
neighborhood color set
Opis:
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs are determined and several bounds are established for the set chromatic number of a graph in terms of other graphical parameters.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 3; 545-561
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three edge-coloring conjectures
Autorzy:
Schelp, Richard
Powiązania:
https://bibliotekanauki.pl/articles/743559.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
Ramsey number
vertex-distinguishing edge-coloring
strong chromatic index
balanced edge-coloring
local coloring
mean coloring
Opis:
The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 173-182
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Tight Bound on the Set Chromatic Number
Autorzy:
Sereni, Jean-Sébastien
Yilma, Zelealem B.
Powiązania:
https://bibliotekanauki.pl/articles/30146528.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
chromatic number
set coloring
set chromatic number
neighbor
distinguishing coloring
Opis:
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 461-465
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on the Total Detection Numbers of Cycles
Autorzy:
Escuadro, Henry E.
Fujie, Futaba
Musick, Chad E.
Powiązania:
https://bibliotekanauki.pl/articles/31339492.pdf
Data publikacji:
2015-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex-distinguishing coloring
detectable labeling
detection number
total detection number
Hamiltonian graph
Opis:
Let G be a connected graph of size at least 2 and c :E(G)→{0, 1, . . ., k− 1} an edge coloring (or labeling) of G using k labels, where adjacent edges may be assigned the same label. For each vertex v of G, the color code of v with respect to c is the k-vector code(v) = (a0, a1, . . ., ak−1), where ai is the number of edges incident with v that are labeled i for 0 ≤ i ≤ k − 1. The labeling c is called a detectable labeling if distinct vertices in G have distinct color codes. The value val(c) of a detectable labeling c of a graph G is the sum of the labels assigned to the edges in G. The total detection number td(G) of G is defined by td(G) = min{val(c)}, where the minimum is taken over all detectable labelings c of G. We investigate the problem of determining the total detection numbers of cycles.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 2; 237-247
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of temperature on changes in the distinguishing features of the usable quality of soybean meal
Autorzy:
Drzewieniecka, Beata
Drzewieniecki, Jan
Blatnický, Miroslav
Powiązania:
https://bibliotekanauki.pl/articles/27315933.pdf
Data publikacji:
2018
Wydawca:
STE GROUP
Tematy:
śruta sojowa
kwasy tłuszczowe
liczba kwasowa
liczba nadtlenkowa
procesy transportowe
pasze
soybean meal
fatty acids
acid number
peroxide value
transport processes
fodder
Opis:
Soybean meal is one of the fodder components. It is a by-product of the production of soybean oil. Soybean meal is a specific cargo due to changes that may occur in it during transport processes. These changes are subject to many distinguishing features of usable quality inter alia fat and fatty acid content. The temperature and size of the soybean meal particles are among the factors influencing the transformations. The article presents the results of research on soybean meal and its individual fractions and the impact of selected indicators on the quality changes of this cargo. The results depend on the conditions corresponding to those that occur during the storage, handling and transport processes. The dependencies between them have been determined. The performed research allowed to determine the type and scope of changes taking place in this cargo under the influence of temperature. The results of the study showed that as the temperature rises, the fatty acid content in the soybean meal decreased during storage for a given period of 30 days.
Źródło:
New Trends in Production Engineering; 2018, 1, 1; 377-383
2545-2843
Pojawia się w:
New Trends in Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies