Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "BIC." wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
A latent class analysis on the usage of mobile phones among management students
Autorzy:
Kumar, Sunil
Dabgotra, Apurba Vishal
Powiązania:
https://bibliotekanauki.pl/articles/1363630.pdf
Data publikacji:
2021-03-03
Wydawca:
Główny Urząd Statystyczny
Tematy:
BIC
Opis:
In the past few years, wireless devices, including pocket PCs, pagers, mobile phones, etc, have gained popularity among a variety of users across the world and the use of mobile phones in particular, has increased significantly in many parts of the world, especially in India. Cell phones are now the most popular form of electronic communication and constitute an integral part of adolescents' daily lives, as is the case for the majority of mobile phone users. In fact, mobile phones have turned from a technological tool to a social tool. Therefore, the influence of cell phones on young people needs to be thoroughly examined. In this paper, we explore the attitude of young adults towards cell phones and identify the hidden classes of respondents according to the patterns of mobile phone use. The Latent Class Analysis (LCA) serves as a tool to detect any peculiarities, including those gender-based. LCA measures the value of an unknown latent variable on the basis of the respondents' answers to various indicator variables; for this reason, a proper selection of indicators is of great importance here. In this work, we propose a method of selecting the most useful variables for an LCA-based detection of group structures from within the examined data. We apply a greedy search algorithm, where during each phase the models are compared through an approximation to their Bayes factor. The method is applied in the process of selecting variables related to mobile phone usage which are most useful for the clustering of respondents into different classes. The findings demonstrate that young people display various feelings and attitudes toward cell phone usage.
Źródło:
Statistics in Transition new series; 2021, 22, 1; 89-114
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical Log-linear Models for Contingency Tables
Hierarchiczne modele logarytmiczno-liniowe dla tablic kontyngencji
Autorzy:
Brzezińska, Justyna
Powiązania:
https://bibliotekanauki.pl/articles/906850.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
log-linear models
hierarchical log-linear models
AIC
BIC
Opis:
Log-linear models are widely used for qualitative data in multidimensional contingency tables. Hierarchical log-linear models are models that include all lower-order terms composed from variables contained in a higher-order model term. The starting point is a saturated model, then homogenous associations, conditional independence and complete independence. There are several statistics that help to choose the best model. The first is the likelihood ratio approach, next is AIC and BIC information criteria. In R software there is loglm() function in MASS library and glm in stats library. The first approach is presented in this paper
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2012, 269
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mixture model of NMR - its application to diagnosis and treatment of brain cancer
Autorzy:
Binczyk, F.
Tarnawski, R.
Polańska, J.
Powiązania:
https://bibliotekanauki.pl/articles/229861.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
GMM
EM algorithm
BIC
NMR
Savitzky-Golay filter
Opis:
Nuclear Magnetic Resonance (NMR) is widely used technique in cancer diagnosis and treatment planning. It is employed to search for the high concentration regions of particular metabolites, which are directly related to the concentration of cancer cells. NMR signal maybe be characterized by a set of peaks which are representation of every distinct metabolite. Area under peak must be calculated in order to obtain proper information about metabolite amount. Commercially available software allows for the analysis of one-peak-in-time only. The proposed technique, based on Gaussian Mixture Model (GMM), allows for modeling all-peaks-in-time, and corrects after the neighboring peaks giving more accurate estimates of metabolite concentration. The resulting software processes NMR signal from the very beginning up to the final result, which is given in a form of so called metabolite map.
Źródło:
Archives of Control Sciences; 2010, 20, 4; 457-472
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On an Improvement of the Model-Based Clustering Method
O pewnej modyfikacji w metodzie taksonomii opartej na modelach mieszanych
Autorzy:
Witek, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/906293.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Model-based clustering (MBC)
Gaussian mixture models
EM algorithm
MLE
MAP
BIC
conjugate prior
Opis:
W artykule przedstawiona została modyfikacja metody taksonomii opartej na modelach mieszanych, w przypadku gdy niemożliwym staje się oszacowanie parametrów modelu za pomocą algorytmu EM. Gdy liczba obiektów przypisanych do klasy jest mniejsza niż liczba zmiennych opisujących te obiekty, niemożliwym staje się oszacowanie parametrów modelu. By uniknąć tej sytuacji estymatory największej wiarygodności zastępowane są estymatorami o największym prawdopodobieństwie a posteriori. Wybór modelu o najlepszej parametryzacji i stosownej liczbie klas dokonywany jest wówczas za pomocą zmodyfikowanej statystyki BIC.
An improvement o f the model-based clustering (MBC) method in the case when EM algorithm fails as a result o f singularities is the basic aim o f this paper. Replacement o f the maximum likelihood (MLE) estimator by a maximum a posteriori (MAP) estimator, also found by the EM algorithm is proposed. Models with different number o f components are compared using a modified version o f BIC, where the likelihood is evaluated at the MAP instead o f MLE. A highly dispersed proper conjugate prior is shown to avoid singularities, but when these are not present it gives similar results to the standard method o f MBC.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies