- Tytuł:
-
Dynamic response of a spherical ballistic casing loaded explosively to current movement of boundary conditions limiting surfaces
Dynamiczna reakcja kulistej osłony balistycznej obciążonej wybuchowo na bieżący ruch powierzchni granicznych warunków brzegowych - Autorzy:
-
Włodarczyk, E.
Zielenkiewicz, M. - Powiązania:
- https://bibliotekanauki.pl/articles/210679.pdf
- Data publikacji:
- 2011
- Wydawca:
- Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
- Tematy:
-
dynamika
osłona balistyczna
obciążenie wybuchowe
materiał osłony sprężyście nieściśliwy
dynamics
ballistic casing
explosive load
incompressible material - Opis:
-
Dynamic fields of: displacements, strains, and stresses in a spherical thick-walled ballistic casing loaded internally by the pressure of detonation products were studied. The casing material was assumed to be homogenous, isotropic, and elastically incompressible. It turns out that this kind of casing loaded as mentioned above oscillates radially with specific angular frequency, alike the mechanical system with one degree of freedom. Two mathematical models of the studied problem were considered: the linear model, in which boundary conditions were applied to the initial position of limiting surfaces of the casing (Lagrangian coordinates), and the non-linear model, taking into account the movement of casing limiting surfaces in boundary conditions (Eulerian coordinates). For the linear model, the analytic closed form solution to the problem was obtained. In case of very small elastic strains, less than 1%, the results obtained for this model are convergent to the non-linear solution. Only in this range of strains, it can be used in engineering calculations. For larger strains, the errors resulting from the linearization of the problem are of the order of dozen and more per cent. The linearization of the problem distorts quantitative and qualitative view of casing dynamic parameters.
Zbadano dynamiczne pola: przemieszczeń, odkształceń i naprężeń w kulistej grubościennej osłonie balistycznej, obciążonej wewnętrznie ciśnieniem produktów detonacji materiału wybuchowego. Założono, że materiał osłony jest jednorodny izotropowy i sprężyście nieściśliwy. Okazuje się, że taka osłona pod wymienionym obciążeniem drga radialnie z określoną częstością kołową, podobnie jak układ mechaniczny o jednym stopniu swobody. Rozpatrzono dwa modele matematyczne badanego zagadnienia: liniowy, w którym warunki brzegowe lokalizowano na początkowym położeniu powierzchni granicznych osłony (współrzędne Lagrange'a) i nieliniowy, uwzględniający ruch granicznych powierzchni osłony w warunkach brzegowych (współrzędne Eulera). Dla modelu liniowego uzyskano analityczne zamknięte rozwiązanie problemu. W przypadku bardzo małych odkształceń sprężystych, mniejszych od 1% otrzymuje się z niego wyniki zbieżne z rozwiązaniem nieliniowym. Tylko w tym przedziale odkształceń można go stosować w inżynierskich obliczeniach. Dla większych odkształceń błędy wynikające z linearyzacji problemu są rzędu kilkunastu i więcej procent. Linearyzacja zagadnienia zniekształca ilościowy i jakościowy obraz dynamicznych parametrów osłony. - Źródło:
-
Biuletyn Wojskowej Akademii Technicznej; 2011, 60, 4; 139-159
1234-5865 - Pojawia się w:
- Biuletyn Wojskowej Akademii Technicznej
- Dostawca treści:
- Biblioteka Nauki