Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image-based modeling" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
A Comparison of Accuracy between Point Clouds from Convergent Images and Spherical Panoramas
Analiza porównawcza chmur punktów wygenerowanych na podstawie zdjęć zbieżnych i panorama
Autorzy:
Szlapińska, S.
Tokarczyk, R.
Powiązania:
https://bibliotekanauki.pl/articles/385943.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Agisoft
zdjęcia zbieżne
modelowanie na podstawie zdjęć
chmury punktów
panoramy sferyczne
convergent photos
image-based modeling
point clouds
spherical panoramas
Opis:
W pracy przedstawiono wyniki analizy porównawczej chmur punktów opracowanych na podstawie zdjęć zbieżnych oraz panoram sferycznych powstałych ze zdjęć wykonywanych z tego samego środka rzutów. Porównywano wyniki opracowania dla sieci zdjęć zbieżnych i sieci panoram pod względem dokładności, gęstości chmury i ekonomiczności pomiaru. Prace badawcze prowadzono na polu testowym założonym w dużym wnętrzu budynku. Zdjęcia zbieżne oraz panoramy wykonano lustrzanką Canon EOS 5D. Do wykonania panoram użyto głowicy GIGA PAN Epic Pro. Do obliczeń i utworzenia modeli zastosowano program Agisoft PhotoScan, ponieważ ma on funkcję automatycznej orientacji oraz dopasowania obrazów w przypadku panoram sferycznych. Porównanie dokładności chmur punktów, z których odczytywano współrzędne punktów kontrolnych, wykazało, że dokładność modelu utworzonego ze zdjęć zbieżnych wynosi 19 mm, a dokładność modelu z panoram – 73 mm. Ponieważ gorszy wynik dokładności chmury z panoram może być spowodowany jej znacznie mniejszą gęstością, sprawdzono również wpływ dokładności ich wykonania przez analityczne wyznaczenie współrzędnych punktów kontrolnych na etapie orientacji zdjęć i panoram. Przeprowadzona analiza potwierdziła, że model ze zdjęć zbieżnych cechuje się wyższą dokładnością (20 mm) niż model z panoram (36 mm).
The work includes the results of a comparison of point clouds made on the basis of convergent images and spherical panoramas from the photos taken in the same center of projection. The results were compared for the group of convergent photos and panoramas in relation to accuracy, cloud density and measurement economics. The research was carried out on the testfield inside a large building. The convergent photos and panoramas were taken using the Canon EOS 5D camera. The robotic camera mount GIGA PAN Epic Pro was used to make panoramas. For calculations and building models the Agisoft PhotoScan application was selected, as it has a function of automatic orientation and adjusting photos. The comparison of point cloud accuracy, from which the control point coordinates were taken, has shown that the accuracy of the model made from the photos was 19 mm, and the accuracy of panorama model was 73 mm. As the worse result of panorama cloud accuracy may be caused by much lower density, the effect on their accuracy was also checked by making an analytical determination of control point coordinates at the stage of photo and panorama orientation. The analysis has proven that the model made of convergent photos is more accurate (20 mm) than the model made of panoramas (36 mm).
Źródło:
Geomatics and Environmental Engineering; 2017, 11, 2; 63-72
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie biologiczne w systemach E-UBIAS
Biological modeling in E-UBIAS systems
Autorzy:
Ogiela, L.
Powiązania:
https://bibliotekanauki.pl/articles/157176.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
kryptografia DNA
systemy E-UBIAS (Extended Understanding Based Image Analysis Systems)
analiza znaczeniowa
procesy personalizacji i identyfikacji osobowej
DNA cryptography
E-UBIAS systems (Extended Understanding Based Image Analysis Systems)
semantic analysis
personalisation and personal identification processes
Opis:
W pracy przedstawiono propozycję wykorzystania metod modelowania biologicznego opartych na kryptografii DNA do zadań znaczeniowej analizy danych. Proponowane rozwiązania zostaną omówione na przykładzie systemów E-UBIAS prowadzących analizę danych obrazowych w połączeniu z analizą identyfikacyjną (personalizacja osobowa). Wykorzystanie w procesach analizy danych kryptografii DNA pozwoli w sposób jednoznaczny na etapie identyfikacji osobowej przypisać analizowane dane do jednostki osobowej. Jednocześnie wzbogacenie systemu o procesy analizy znaczeniowej prowadzone na podstawie interpretacji semantycznej pozwoli wskazać występujące ewentualne zmiany (patologie), które dana osoba posiada.
In this paper the author proposes using biological modeling methods based on the DNA cryptography for semantic data analysis. The solutions proposed are illustrated with an example of E-UBIAS (Extended Understanding Based Image Analysis Systems) systems which analyse the image data in combination with the identity analysis – personal verification and identification processes (personalisation of individuals). The use of DNA cryptography to analyse data makes it possible to unanimously assign the analysed data to an individual at the personal identification stage. At the same time, supplementing the system with semantic analysis processes conducted based on semantic interpretation allows the possible lesions that the person suffers from to be identified. In this publication the author proposes a new class of biometric data analysis systems supplemented with semantic analysis executed in E-UBIAS systems. Extended UBIAS (Understanding Based Image Analysis Systems) systems are dedicated for semantic analysis of biometrics personal features (data).
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 7, 7; 708-711
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena dokładności modelu budynku z bardzo gęstej chmury punktów pozyskanej z integracji zdjęć o różnej geometrii
Assessment of accuracy for the building model acquired from a high dense points cloud based on images of different geometry
Autorzy:
Drzewiecki, R.
Bujakiewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/129593.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
BSP
modelowanie 3D
automatyczne dopasowywanie wieloobrazowe
gęsta chmura punktów
UAV
3D modeling
high density image matching
dense points cloud
Opis:
Dokładność rekonstrukcji 3D modeli budynków jest w znacznym stopniu uzależniona od gęstości chmur punktów jakie są wykorzystywane dla ich tworzenia. Sprzyja temu rozwijająca się w ostatnich latach metoda tworzenia bardzo gęstych chmur punktów w oparciu o automatyczne pomiary na zdjęciach cyfrowych o dużych pokryciach. W niniejszym artykule zostanie przedstawiony przykład rekonstrukcji 3D modelu budynku o skomplikowanym kształcie, z wykorzystaniem gęstej chmury punktów, ze zdjęć niemetrycznych o różnej geometrii. W tym celu, pozyskano 200 zdjęć o pokryciu około 90%, na trzech poziomach wysokości lotu systemu BSP (DJI Phantom4), oraz dodatkowo wykonano 46 zdjęć z podobnym pokryciem, aparatem FUJIFILM X-S1, ze stanowisk naziemnych. Do całego procesu rekonstrukcji obiektu wykorzystano oprogramowanie Agisoft PhotoScan. Ze względu na zróżnicowaną metrykę zdjęć z BSP oraz stanowisk naziemnych, a także ich różny sposób kalibracji (przed lub w trakcie opracowania), zdjęcia obu sieci umieszczono w dwóch klastrach, dla których w niezależnych wyrównaniach aero/terra triangulacji, zostały wyznaczone parametry orientacji zewnętrznej (EOZ), względem tego samego referencyjnego układu współrzędnych. Automatyczny pomiar bardzo dużej liczby punktów opisujących obiekt, na zdjęciach z obu klastrów oraz wykorzystanie wyznaczonej metryki kamer i parametrów EOZ, umożliwiło generowanie jednej wspólnej bardzo gęstej chmury punktów (ponad 6 milionów), z której stworzono finalne produkty, tj. 3D modele obiektu w kilku formach. Ocenę poprawności rekonstrukcji kształtu 3D modelu obiektu wykonano na podstawie porównania odległości miar czołowych budynku pomierzonych w terenie i na modelu, oraz długości pomiędzy punktami specjalnie sygnalizowanymi na obiekcie, a także poprzez analizę średnich błędów kwadratowych określonych dla punktów osnowy. Ostateczna dokładność mieściła się w granicach 0.01 - 0.03m, co potwierdza duży potencjał integracji zdjęć niemetrycznych, pozyskanych dla obiektu z drona i stanowisk naziemnych, oraz tworzenia jednej wspólnej gęstej chmury punktów, w celu wiernej rekonstrukcji kształtu modelu 3D.
Accuracy for reconstruction of 3D models of buildings, depends mainly upon density of point clouds, which are used for their creation. The methods for creation of the very dense points clouds on base of automatic measurement of the multi images have been successfully developed. In this paper, the example for automatic reconstruction of 3D model of building of quite complicated shape with use the dense points cloud from non-metric photographs of different geometry, is presented. For this purpose, using the BSP (DJI Phantom) from three height levels - 200 photographs with overlap of about 90%, were acquired. In addition, 46 photographs from ground stations with the camera (FUJIFILM X-S1),were taken. The entire reconstruction process of 3D model of the building, was executed with Agisoft PhotoScan programe. Because of different cameras specification for photographs taken from BSP and from ground stations and various approaches for cameras calibration, the two groups of photographs were located in two classes (clasters), for which the exterior orientation parameters (EO) were separately determined by aero and /terra triangulation, referenced to the same ground coordinate system. The automatic measurement of very large number of image object points on all photographs and the use of their interior and exterior orientation parameters, have enabled to generate one common very dense points cloud (about 6 millions), which was used to produce the final 3D building model in a few forms. The accuracy of reconstruction of the building model shape was estimated on base of comparison of the model and real data (measures on the building) and also the RSE for the control and check points. The overall accuracy of 0.01 – 0.03 meters was obtained, which have confirmed the high potentiality for integration of different geometry non-metric photographs for the reconstruction of good quality 3D model.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2018, 30; 83-93
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid statistical approach for texture images classification based on scale invariant features and mixture gamma distribution
Autorzy:
Benlakhdar, Said
Rziza, Mohammed
Thami, Rachid Oulad Haj
Powiązania:
https://bibliotekanauki.pl/articles/29520269.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
statistical image modeling
SIFT
mixture gamma distribution
uniform discrete curvelet transform
classification
Opis:
Image classification refers to an important process in computer vision. The purpose of this paper is to propose a novel approach named GGD-GMM and based on statistical modeling in wavelet domain to describe textured images and rely on number of principles which give its internal coherence and originality. Firstly, we propose a robust algorithm based on the combination of the wavelet transform and Scale Invariant Feature Transform. Secondly, we implement the aforementioned algorithm and fit the result using the finite mixture gamma distribution (GMM). The results, obtained for two benchmark datasets, show that the proposed algorithm has a good relevance as it provides higher classification accuracy compared to some other well known models see (Kohavi, 1995). Moreover, it shows other advantages relied to Noise-resistant and rotation invariant.
Źródło:
Computer Methods in Materials Science; 2020, 20, 3; 95-106
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowe rozpoznanie ciąży na podstawie obrazów ultrasonograficznych macicy krowy z wykorzystaniem systemu informatycznego "USG Recognizer"
Neural identification of the embryo of calf based on ultrasound images of the cow s womb using computer system "USG Recognizer"
Autorzy:
Kuzimska, T.
Boniecki, P.
Jaśkowski, J. M.
Przybył, K.
Powiązania:
https://bibliotekanauki.pl/articles/336377.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
krowa
macica
ciąża
ultrasonografia
analiza obrazu
sztuczna inteligencja
sieci neuronowe
modelowanie neuronowe
systemy informatyczne
cow
womb
pregnancy
ultrasonography
image analysis
artificial intelligence
neural networks
neural modeling
computer systems
Opis:
W pracy zaprezentowano wytworzony, oryginalny system informatyczny "USG Recognizer", który zaopatrzony został w szereg funkcji wspomagających tworzenie adekwatnych zbiorów uczących, niezbędnych w procesie generowania modeli neuronowych. Dzięki tym funkcjonalnościom możliwa jest identyfikacja oraz ekstrakcja wiedzy zawartej w graficznych danych empirycznych, zakodowanej w postaci cyfrowych zdjęć ultrasonograficznych. W oparciu o zbudowaną aplikację wygenerowana została sztuczna sieć neuronowa, której celem było wspomaganie rozpoznania lub wykluczenia ciąży, dokonanego na podstawie ultrasonogramów macicy krowy. Zaproponowany system informatyczny "USG Recognizer" został zbudowany z wykorzystaniem środowisk: Visual Paradigm (UML 8.0) oraz Microsoft Visual Studio 2010 Professional Edition.
The software "USG Recognizer" that was described in this work is equipped with a binarization function with threshold. The application also fulfills some additional functions such as: contrast and closing. With this functionality it is possible to achieve empirical data from digital ultrasound photo of cow's womb. The artificial neural network was generated on the basis of created application. The main purpose of this network is to support an identification or exclusion of the gestation in user's ultrasound picture. "USG Recognizer" was created using Visual Paradigm (UML 8.0) and Microsoft Visual Studio 2010 Professional Edition environments.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2012, 57, 1; 96-100
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies