Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "queueing systems with non-homogeneous customers" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
M/M/n/(m,V) queueing systems with a rejection mechanism based on AQM
Autorzy:
Ziółkowski, M.
Małek, J.
Powiązania:
https://bibliotekanauki.pl/articles/122605.pdf
Data publikacji:
2013
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Markovian process
queueing systems with non-homogeneous customers
active queue management introduction
Opis:
M/M/n/(m,V) queueing systems with service time independent of customer volume are well known models used in computer science. In real computer systems (computer networks etc.) we often deal with the overload problem. In computer networks we solve the problem using AQM techniques, which are connected with introducing some accepting function that lets us reject in random way some part of the arriving customers. It causes reduction of each customer's mean waiting time and let us avoid jams in consequence. Unfortunately, in this way the loss probability increases. In this paper we investigate the analogous model based on some generalization of M/M/n/(m,V) queueing system. We obtain formulas for a stationary number of customers distribution function and loss probability and we do some computations in special cases.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2013, 12, 1; 121-130
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance evaluation of unreliable system with infinite number of servers
Autorzy:
Tikhonenko, O.
Ziółkowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/201519.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
queueing systems with non-homogeneous customers
unreliable queueing systems
total volume
loss probability
Laplace–Stieltjes transform
Opis:
In the paper, we investigate queueing system M/G/∞ with non-homogeneous customers. By non-homogeneity we mean that each customer is characterized by some arbitrarily distributed random volume. The arriving customers appear according to a stationary Poisson process. Service time of a customer is proportional to his its volume. The system is unreliable, which means that all its servers can break simultaneously and then the repair period goes on for random time having an arbitrary distribution. During this period, customers present in the system and arriving to it are not served. Their service continues immediately after repair period termination. Time intervals of the system in good repair mode have an exponential distribution. For such system, we determine steady-state sojourn time and total volume of customers present in it distributions. We also estimate the loss probability for the similar system with limited total volume. An analysis of some special cases and some numerical examples are attached as well.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 2; 289-297
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
M/G→ /n/0 Erlang queueing system with heterogeneous servers and non-homogeneous customers
Autorzy:
Ziółkowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/199840.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multi-server queueing systems
queueing systems with non-homogeneous customers
queueing systems with heterogeneous servers
total volume distribution
Laplace–Stieltjes transform
system kolejkowania
transformata Laplace'a-Stieltjesa
dystrybucja
Opis:
In the present paper, we investigate a multi-server queueing system with heterogeneous servers, unlimited memory space, and non-homogeneous customers. The arriving customers appear according to a stationary Poisson process. Service time distribution functions may be different for every server. Customers are additionally characterized by some random volume. On every server, the service time of the customer depends on their volume. The number of customers distribution function is obtained in the classical model of the system. In the model with non-homogeneous customers, the stationary total volume distribution function is determined in the term of Laplace–Stieltjes transform. The stationary first and second moments of a total customers volume are calculated. An analysis of some special cases of the model and some numerical examples are also included.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 1; 59-66
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies