Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pełka, Marcin" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Unfolding analysis adaptation for symbolic data – hybrid and symbolic-numeric approach
Autorzy:
Zaborski, Artur
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/425012.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
symbolic data analysis
unfolding analysis
preference data
Opis:
The aim of this paper is to propose and present adaptations of unfolding analysis for symbolic data. In the article, the basic terms of unfolding analysis and symbolic data are presented. The paper presents two approaches – the internal hybrid approach and the external symbolic-numeric approach. In the empirical part, the external symbolic-numeric unfolding for LCD brands is presented. Symbolic multidimensional scaling R source codes were written by authors.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 3(41); 32-39
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geometrical Presentation of Preferences by Using Profit Analysis and R Program
Geometryczna prezentacja preferencji z wykorzystaniem analizy profit i programu R
Autorzy:
Zaborski, Artur
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/905645.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
multidimensional scaling
property fitting
preference maps
Opis:
PROFIT is a kind of external vector analysis of preference mapping. It is a combination of multidimensional scaling and multiple regression analysis. PROFIT takes as input both a configuration of stimulus points and a set of preference rankings of the different properties of the stimuli. For stimulus space obtained by multidimensional scaling multiple regression is performed using the coordinates as independent variables and attribute as the dependent variable. The program locates each property as a vector through the configuration of points, so that it indicates the direction over the space in which the property is increasing. The article presents PROFIT analysis and the R code to carry out the method. The function is illustrated with an example of application in the analysis of consumer preferences.
PROFIT jest przykładem „zewnętrznej” wektorowej metody map preferencji. Jest ona połączeniem skalowania wielowymiarowego i analizy regresji wielorakiej. Danymi wejściowymi w analizie PROFIT są zarówno współrzędne punktów reprezentujących obiekty na mapie percepcyjnej jak również oceny preferencji obiektów ze względu na wybrane zmienne. Dla konfiguracji punktów reprezentujących obiekty otrzymanej za pomocą skalowania wielowymiarowego przeprowadza się analizę regresji wielorakiej, w której zmiennymi objaśniającymi są współrzędne obiektów na mapie percepcyjnej, a zmiennymi zależnymi oceny marek ze względu na poszczególne cechy. Program dokonuje rozmieszczenia na mapie percepcyjnej zmiennych w postaci wektorów wskazujących kierunek maksymalnej preferencji ze względu na daną zmienną. Artykuł jest prezentacją analizy PROFIT oraz składni poleceń programu R, pozwalającej na jej realizację. Sposób użycia funkcji zilustrowano przykładem badania preferencji.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Unfolding Analysis for Symbolic Objects Based on the Example of the External Car Advertisement Evaluation
Analiza unfolding obiektów symbolicznych na przykładzie zewnętrznej oceny reklam samochodów
Autorzy:
Zaborski, Artur
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/28407778.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
symbolic data analysis
unfolding analysis
preference measurement
car advertisements
symboliczna analiza danych
analiza unfolding
pomiar preferencji
reklamy samochodów
Opis:
Aim: Multidimensional unfolding allows representing both columns (e.g. products, services) and rows (e.g. customers) of the preference matrix on the same low-dimensional map (usually it’s a two or three-dimensional map). The main aim of the paper was to propose how to perform unfolding analysis for symbolic objects. Methodology: The paper describes the possible ways of performing unfolding analysis for symbolic interval-valued data. The external unfolding is described in the details and used in the empirical part of the paper. The data (preferences and dissimilarities) were gathered by using the incomplete method of triads. Results: The empirical part presents an application for unfolding symbolic data to evaluate customers’ preferences, where car advertisements are used as the example. The results presented on a two-dimensional perceptual map allowed to discover seven groups of respondents with different preferences; most of them prefer Skoda, Audi, Volkswagen, and Honda advertisements to Toyota and Volvo. Implications and recommendations: The proposed external approach for symbolic data allows to represent objects as rectangles (on two-dimensional map) or cuboids (in the case of three dimensions). The respondents are represented as points. Further work should focus on creating an algorithm that allows for the presentation of both symbolic objects and preferences expressed by respondents in the form of rectangles or cuboids. Originality/Value: The paper presents an innovative and previously unpresented external unfolding for symbolic data. Besides that it presents how other unfolding approaches could be adapted for symbolic data.
Cel: Wielowymiarowa analiza unfolding pozwala na przedstawienie zarówno kolumn (np. produktów, usług), jak i wierszy (np. klientów) macierzy preferencji na tej samej mapie percepcyjnej (zwykle jest to mapa dwulub trójwymiarowa). Celem artykułu jest wskazanie propozycji przeprowadzenia analizy unfolding dla obiektów symbolicznych. Metodyka: W artykule opisano możliwe sposoby przeprowadzenia analizy unfolding dla symbolicznych danych przedziałowych. Szczegółowo opisana zewnętrzna analiza unfolding została wykorzystana w części empirycznej artykułu. Dane (zarówno preferencje, jak i niepodobieństwa) zebrano z wykorzystaniem niepełnej metody triad. Wyniki: W części empirycznej zaprezentowano możliwości zastosowania analizy unfolding dla danych symbolicznych w badaniu preferencji respondentów na przykładzie oceny wybranych reklam samochodów. Wyniki zilustrowane na dwuwymiarowej mapie percepcyjnej pozwoliły zidentyfikować siedem grup respondentów o różnych preferencjach względem przedstawionych reklam. Wyniki badania wskazują, że dla większości respondentów reklamy Škody, Audi, Hondy i Volkswagena są bardziej preferowane niż reklamy proponowane przez Volvo i Toyotę. Implikacje i rekomendacje: Zaprezentowane podejście do zewnętrznej analizy unfolding pozwala na prezentację obiektów w postaci prostokątów (w przestrzeni dwuwymiarowej) lub prostopadłościanów (w przestrzeni trójwymiarowej), a respondentów – w postaci punktów. Dalsze prace powinny skoncentrować się na stworzeniu algorytmu pozwalającego na prezentację zarówno obiektów symbolicznych, jak i wyrażanych przez respondentów preferencji w postaci prostokątów lub prostopadłościanów. Oryginalność/Wartość: Artykuł prezentuje nowatorskie i nieprezentowane wcześniej podejście do zewnętrznej analizy unfolding dla danych symbolicznych. Ponadto przedstawia inne możliwe podejścia do symbolicznej analizy unfolding.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 4; 15-28
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies