- Tytuł:
- A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs
- Autorzy:
- Wide, Wojciech
- Powiązania:
- https://bibliotekanauki.pl/articles/31341826.pdf
- Data publikacji:
- 2017-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
cycle
Fan-type heavy subgraph
Hamilton cycle
pancyclicity - Opis:
- A graph G on n vertices is said to be pancyclic if it contains cycles of all lengths k for k ∈ {3, . . ., n}. A vertex v ∈ V (G) is called super-heavy if the number of its neighbours in G is at least (n+1)/2. For a given graph H we say that G is H-f1-heavy if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at least one of them is super-heavy. For a family of graphs ℋ we say that G is ℋ-f1-heavy, if G is H-f1-heavy for every graph H ∈ℋ. Let D denote the deer, a graph consisting of a triangle with two disjoint paths P3 adjoined to two of its vertices. In this paper we prove that every 2-connected {K1,3, P7, D}-f1-heavy graph on n ≥ 14 vertices is pancyclic. This result extends the previous work by Faudree, Ryjáček and Schiermeyer.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2017, 37, 2; 477-499
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki