A graph G on n vertices is said to be pancyclic if it contains cycles of all lengths k for k ∈ {3, . . ., n}. A vertex v ∈ V (G) is called super-heavy if the number of its neighbours in G is at least (n+1)/2. For a given graph H we say that G is H-f1-heavy if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at least one of them is super-heavy. For a family of graphs ℋ we say that G is ℋ-f1-heavy, if G is H-f1-heavy for every graph H ∈ℋ.
Let D denote the deer, a graph consisting of a triangle with two disjoint paths P3 adjoined to two of its vertices. In this paper we prove that every 2-connected {K1,3, P7, D}-f1-heavy graph on n ≥ 14 vertices is pancyclic. This result extends the previous work by Faudree, Ryjáček and Schiermeyer.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00