Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Uniwersytet Zielonogórski." wg kryterium: Wszystkie pola


Wyświetlanie 1-14 z 14
Tytuł:
Signed Total Roman Domination in Digraphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31342127.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
signed total Roman dominating function
signed total Roman domination number
Opis:
Let $D$ be a finite and simple digraph with vertex set $V (D)$. A signed total Roman dominating function (STRDF) on a digraph $D$ is a function $ f : V (D) \rightarrow {−1, 1, 2} $ satisfying the conditions that (i) $ \Sigma_{x \in N^− (v) } f(x) \ge 1 $ for each $ v \in V (D) $, where $ N^− (v) $ consists of all vertices of $D$ from which arcs go into $v$, and (ii) every vertex u for which $f(u) = −1$ has an inner neighbor $v$ for which $f(v) = 2$. The weight of an STRDF $f$ is $ w(f) = \Sigma_{ v \in V } (D) f(v) $. The signed total Roman domination number $ \gamma_{stR} (D) $ of $D$ is the minimum weight of an STRDF on $D$. In this paper we initiate the study of the signed total Roman domination number of digraphs, and we present different bounds on $ \gamma_{stR} (D) $. In addition, we determine the signed total Roman domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed total Roman domination number $ \gamma_{stR} (G)$ of graphs $G$.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 261-272
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Roman Domatic Problem in Graphs and Digraphs: A Survey
Autorzy:
Chellali, Mustapha
Rad, Nader Jafari
Sheikholeslami, Seyed Mahmoud
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/32304148.pdf
Data publikacji:
2022-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
domatic
Opis:
In this paper, we survey results on the Roman domatic number and its variants in both graphs and digraphs. This fifth survey completes our works on Roman domination and its variations published in two book chapters and two other surveys.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 861-891
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Double Roman Domatic Number of a Digraph
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31348166.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
double Roman domination
double Roman domatic number
Opis:
A double Roman dominating function on a digraph $D$ with vertex set $V(D)$ is defined in [G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. (2017).] as a function $f : V (D) → {0, 1, 2, 3}$ having the property that if $f(v) = 0$, then the vertex $v$ must have at least two in-neighbors assigned 2 under $f$ or one in-neighbor w with $f(w) = 3$, and $if f(v) = 1$, then the vertex v must have at least one in-neighbor $u$ with $f(u) ≥ 2$. A set ${f_1, f_2, . . ., f_d}$ of distinct double Roman dominating functions on $D$ with the property that $∑_{i=1}^df_i(v)≤3$ for each $v ∈ V (D)$ is called a double Roman dominating family (of functions) on $D$. The maximum number of functions in a double Roman dominating family on $D$ is the double Roman domatic number of $D$, denoted by $d_{dR}(D)$. We initiate the study of the double Roman domatic number, and we present different sharp bounds on $d_{dR}(D)$. In addition, we determine the double Roman domatic number of some classes of digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 995-1004
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Signed (Total) k-Independence Number in Graphs
Autorzy:
Khodkar, Abdollah
Samadi, Babak
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31234099.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination in graphs
signed k-independence
limited packing
tuple domination
Opis:
Let G be a graph. A function f : V (G) → {−1, 1} is a signed k- independence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence function of G. In this paper, we present new bounds on these two parameters which improve some existing bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 651-662
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Signed 2-Independence Number in Graphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/29794119.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
bounds
signed 2-independence function
signed 2-independence number
Nordhaus-Gaddum type result
Opis:
Let $G$ be a finite and simple graph with vertex set $V (G)$, and let $f V (G) → {−1, 1}$ be a two-valued function. If $∑_{x∈N|v|} f(x) ≤ 1$ for each $v ∈ V (G)$, where $N[v]$ is the closed neighborhood of $v$, then $f$ is a signed 2-independence function on $G$. The weight of a signed 2-independence function $f$ is $w(f) = ∑_{v∈V (G)} f(v)$. The maximum of weights $w(f)$, taken over all signed 2-independence functions $f$ on $G$, is the signed 2-independence number $α_s^2(G)$ of $G$. In this work, we mainly present upper bounds on $α_s^2(G)$, as for example $α_s^2(G) ≤ n−2 [∆ (G)//2]$, and we prove the Nordhaus-Gaddum type inequality $α_s^2 (G) + α_s^2(G) ≤ n+1$, where $n$ is the order and $∆ (G)$ is the maximum degree of the graph $G$. Some of our theorems improve well-known results on the signed 2-independence number.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 709-715
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination Number, Independent Domination Number and 2-Independence Number in Trees
Autorzy:
Dehgardi, Nasrin
Sheikholeslami, Seyed Mahmoud
Valinavaz, Mina
Aram, Hamideh
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/32083746.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
2-independence number
domination number
independent domination number
Opis:
For a graph $G$, let $\gamma(G)$ be the domination number, $i(G)$ be the independent domination number and $\beta_2(G)$ be the 2-independence number. In this paper, we prove that for any tree $T$ of order $n ≥ 2, 4\beta_2(T) − 3\gamma(T) ≥ 3i(T)$, and we characterize all trees attaining equality. Also we prove that for every tree $T$ of order \(n ≥ 2, i(T)≤\frac{3\beta_2(T)}{4}\), and we characterize all extreme trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 39-49
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Upper Bounds on the Signed Total (k, k)-Domatic Number of Graphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31339301.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total (k
k)-domatic number
signed total k-dominating function
signed total k-domination number
regular graphs
Opis:
Let $G$ be a graph with vertex set $V (G)$, and let $ f : V (G) \rightarrow {−1, 1}$ be a two-valued function. If $ k \geq 1$ is an integer and \( \sum_{ x \in N(v)} f(x) \geq k \) for each $ v \in V (G) $, where $N(v)$ is the neighborhood of $v$, then $f$ is a signed total $k$-dominating function on $G$. A set ${f_1, f_2, . . ., f_d}$ of distinct signed total k-dominating functions on $G$ with the property that \( \sum_{i=1}^d f_i(x) \leq k \) for each $ x \in V (G)$, is called a signed total ($k$, $k$)-dominating family (of functions) on $G$. The maximum number of functions in a signed total ($k$, $k$)-dominating family on $G$ is the signed total ($k$, $k$)-domatic number of $G$. In this article we mainly present upper bounds on the signed total ($k$, $k$)- domatic number, in particular for regular graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 641-650
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signed Roman Edge k -Domination in Graphs
Autorzy:
Asgharsharghi, Leila
Sheikholeslami, Seyed Mahmoud
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31342188.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed Roman edge k -dominating function
signed Roman edge k -domination number
Opis:
Let $ k \ge 1 $ be an integer, and $ G = (V, E) $ be a finite and simple graph. The closed neighborhood $ N_G [e]$ of an edge $e$ in a graph $G$ is the set consisting of $e$ and all edges having a common end-vertex with $e$. A signed Roman edge $k$-dominating function (SREkDF) on a graph $G$ is a function $ f : E \rightarrow {−1, 1, 2} $ satisfying the conditions that (i) for every edge $e$ of $G$, $ \Sigma_{ x \in N_G [e] } f(x) \ge k $ and (ii) every edge e for which $f(e) = −1$ is adjacent to at least one edge $ e^′ $ for which $ f(e^′) = 2 $. The minimum of the values $ \Sigma_{e \in E} f(e) $, taken over all signed Roman edge $k$-dominating functions $f$ of $G$ is called the signed Roman edge $k$-domination number of $G$, and is denoted by $ \gamma_{sRk}^' (G) $. In this paper we initiate the study of the signed Roman edge $k$-domination in graphs and present some (sharp) bounds for this parameter.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 39-53
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Bounds on the Signed Total Domination Number of Graphs
Autorzy:
Moghaddam, Seyyed Mehdi Hosseini
Mojdeh, Doost Ali
Samadi, Babak
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31340895.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
open packing
signed total domination number
total limited packing
tuple total domination number
Opis:
In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on $ K_{r+1} $-free graphs for $ r \ge 2 $. Applying the concept of total limited packing we bound the signed total domination number of $ G $ with $ \delta (G) \ge 3 $ from above by $ n - 2 \floor{ \frac{ 2 \rho_0 (G) + \delta - 3 }{ 2 } } $. Also, we prove that $ \gamma_{st} (T) \le n − 2(s − s^′ ) $ for any tree $ T $ of order$ $ n, with $ s $ support vertices and $ s^′ $ support vertices of degree two. Moreover, we characterize all trees attaining this bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 467-477
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On The Co-Roman Domination in Graphs
Autorzy:
Shao, Zehui
Sheikholeslami, Seyed Mahmoud
Soroudi, Marzieh
Volkmann, Lutz
Liu, Xinmiao
Powiązania:
https://bibliotekanauki.pl/articles/31343438.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
co-Roman dominating function
co-Roman domination number
Roman domination
Opis:
Let $G = (V, E)$ be a graph and let $f : V (G) \rightarrow {0, 1, 2}$ be a function. A vertex $v$ is said to be protected with respect to $f$, if $f(v) > 0$ or $f(v) = 0$ and $v$ is adjacent to a vertex of positive weight. The function $f$ is a co-Roman dominating function if (i) every vertex in $V$ is protected, and (ii) each $ v \in V $ with positive weight has a neighbor $ u \in V $ with $ f(u) = 0 $ such that the function $ f_{uv} : V \rightarrow {0, 1, 2} $, defined by $ f_{uv} (u) = 1$, $ f_{uv}(v) = f(v) − 1$ and $ f_{uv}(x) = f(x)$ for $ x \in V \backslash \{ v, u \} $, has no unprotected vertex. The weight of $f$ is $ \omega(f) = \Sigma_{ v \in V } f(v) $. The co-Roman domination number of a graph $G$, denoted by $ \gamma_{cr}(G) $, is the minimum weight of a co-Roman dominating function on $G$. In this paper, we give a characterization of graphs of order $n$ for which co-Roman domination number is \( \tfrac{2n}{3} \) or $n − 2$, which settles two open problem in [S. Arumugam, K. Ebadi and M. Manrique, Co-Roman domination in graphs, Proc. Indian Acad. Sci. Math. Sci. 125 (2015) 1–10]. Furthermore, we present some sharp bounds on the co-Roman domination number.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 455-472
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The k-Rainbow Bondage Number of a Digraph
Autorzy:
Amjadi, Jafar
Mohammadi, Negar
Sheikholeslami, Seyed Mahmoud
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31339490.pdf
Data publikacji:
2015-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k-rainbow dominating function
k-rainbow domination number
k-rainbow bondage number
digraph
Opis:
Let $ D = (V,A) $ be a finite and simple digraph. A $k$-rainbow dominating function ($ k \text{RDF} $) of a digraph $D$ is a function $f$ from the vertex set $V$ to the set of all subsets of the set ${1, 2, . . ., k}$ such that for any vertex $ v \in V $ with $ f(v) = \emptyset $ the condition \( \bigcup_{ u \in N^−(v) } f(u) = {1, 2, . . ., k} \) is fulfilled, where $ N^− (v) $ is the set of in-neighbors of $v$. The weight of a \( k \text{RDF} \) \( f \) is the value \( \omega (f) = \sum_{v \in V} |f(v)| \). The $k$-rainbow domination number of a digraph $D$, denoted by $ \gamma_{rk} (D) $, is the minimum weight of a $ k \text{RDF} $ of $D$. The $k$-rainbow bondage number $ b_{rk} (D) $ of a digraph $D$ with maximum in-degree at least two, is the minimum cardinality of all sets $ A^\prime \subseteq A $ for which $ \gamma_{rk} (D−A^\prime ) > \gamma_{rk} (D) $. In this paper, we establish some bounds for the $k$-rainbow bondage number and determine the $k$-rainbow bondage number of several classes of digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 2; 261-270
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Signed Total Roman k-Domatic Number Of A Graph
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31341581.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total Roman k-dominating function
signed total Roman k-domination number
signed total Roman k-domatic number
Opis:
Let $ k \ge 1 $ be an integer. A signed total Roman $k$-dominating function on a graph $G$ is a function $ f : V (G) \rightarrow {−1, 1, 2} $ such that $ \Sigma_{ u \in N(v) } f(u) \ge k $ for every $ v \in V (G) $, where $ N(v) $ is the neighborhood of $ v $, and every vertex $ u \in V (G) $ for which $ f(u) = −1 $ is adjacent to at least one vertex w for which $ f(w) = 2 $. A set $ { f_1, f_2, . . ., f_d} $ of distinct signed total Roman $k$-dominating functions on $G$ with the property that $ \Sigma_{i=1}^d f_i(v) \le k $ for each $ v \in V (G) $, is called a signed total Roman $k$-dominating family (of functions) on $G$. The maximum number of functions in a signed total Roman $k$-dominating family on $G$ is the signed total Roman $k$-domatic number of $G$, denoted by $ d_{stR}^k (G) $. In this paper we initiate the study of signed total Roman $k$-domatic numbers in graphs, and we present sharp bounds for $ d_{stR}^k (G) $. In particular, we derive some Nordhaus-Gaddum type inequalities. In addition, we determine the signed total Roman $k$-domatic number of some graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 1027-1038
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31343389.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-connectivity
clique number
maximally edge-connected graphs
super-edge-connected graphs
Opis:
Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if λ = δ, and it is super-edgeconnected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number ω(G) of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number ω(G) ≤ r is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 567-573
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Signed Roman k-Domination Number of a Digraph
Autorzy:
Chen, Xiaodan
Hao, Guoliang
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31343713.pdf
Data publikacji:
2019-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed Roman k-dominating function
signed Roman k-domination number
digraph
oriented tree
Opis:
Let $k$ be a positive integer. A signed Roman $k$-dominating function (SRkDF) on a digraph $D$ is a function $ f : V (D) \rightarrow \{−1, 1, 2 \} $ satisfying the conditions that (i) $ \Sigma_{ x \in N^− [v] } f(x) \ge k $ for each $ v \in V (D) $, where $ N^− [v] $ is the closed in-neighborhood of $v$, and (ii) each vertex $u$ for which $f(u) = −1$ has an in-neighbor $v$ for which $f(v) = 2$. The weight of an SRkDF $f$ is $ \Sigma_{ v \in V (D) } f(v) $. The signed Roman $k$-domination number $ \gamma_{sR}^k (D) $ of a digraph $D$ is the minimum weight of an SRkDF on $D$. We determine the exact values of the signed Roman $k$-domination number of some special classes of digraphs and establish some bounds on the signed Roman $k$-domination number of general digraphs. In particular, for an oriented tree $T$ of order $n$, we show that $ \gamma_{sR}^2 (T) \ge (n + 3)//2 $, and we characterize the oriented trees achieving this lower bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 1; 67-79
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-14 z 14

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies