Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "category" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Adjointness between theories and strict theories
Autorzy:
Vogel, Hans-Jürgen
Powiązania:
https://bibliotekanauki.pl/articles/728926.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
symmetric monoidal category
dhts-category
partial theory
adjoint functor
Opis:
The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a dhts-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities ox ≈ o and xo ≈ o, where o and i are the elements selected by the 0-ary operation symbols.
If the object class of a dhts-category forms even a monoid with unit element I and zero element O, then one has a strict partial theory.
In this paper is shown that every J-sorted partial theory corresponds in a natural manner to a J-sorted strict partial theory via a strongly d-monoidal functor. Moreover, there is a pair of adjoint functors between the category of all J-sorted theories and the category of all corresponding J-sorted strict theories.
This investigation needs an axiomatic characterization of the fundamental properties of the category Par of all partial function between arbitrary sets and this characterization leads to the concept of dhts- and dhth∇s-categories, respectively (see [5], [11], [13]).
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2003, 23, 2; 163-212
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Categories of functors between categories with partial morphisms
Autorzy:
Vogel, Hans-Jürgen
Powiązania:
https://bibliotekanauki.pl/articles/729097.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
symmetric monoidal category
dhts-category
Hoehnke category
Hoehnke theory
monoidal functor
d-monoidal functor
dht-symmetric functor
functor composition
cartesian product
Opis:
It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2005, 25, 1; 39-87
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions
Autorzy:
Vogel, Hans-Jürgen
Powiązania:
https://bibliotekanauki.pl/articles/728750.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
halfdiagonal-halfterminal-symmetric category
diagonal inversion
partial order relation
subidentity
equation
Opis:
The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family $d = (d_{A}: A → A⨂ A | A ∈ |Rel|)$ of diagonal morphisms, a family $t = (t_{A}: A → I | A ∈ |Rel|)$ of terminal morphisms, and a family $∇ = (∇_{A}: A ⨂ A → A | A ∈ |Rel|)$ of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for hdht∇s-categories consisting of identities only. Therefore, the class of all small hdht∇-symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2001, 21, 2; 139-163
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies