Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "środowisko sieci" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Możliwości informatyki kwantowej do poprawy dokładności modelowania. Część 1 – Kwantowy algorytm ewolucyjny
Possibility of quantum computer to improve accuracy of modeling. Part 2. Quantum evolutionary algorithm
Autorzy:
Tchórzewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/376693.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
algorytmy ewolucyjne
informatyka kwantowa
modelowanie systemów
sztuczne sieci neuronowe
środowisko MATLABA i Simulinka
Opis:
W pracy zamieszczono wybrane wyniki badania wykorzystania informatyki kwantowej do zwiększenia stopnia dokładności algorytmów ewolucyjnych poprawiających parametry modeli neuronalnych systemów, co zostało zweryfikowane na wybranych przykładach takich systemów jak m.in. ruch robota PR-02. W modelowaniu neuronalnym wykorzystuje się sztuczne sieci neuronowe, które projektuje się, a następnie uczy modeli systemów na bazie danych liczbowych. Parametry sztucznych sieci neuronowych, a zwłaszcza elementy macierzy wag, biasów i parametry funkcji aktywacji można poprawiać za pomocą algorytmów ewolucyjnych. Okazuje się, że wprowadzenie rozwiązań z zakresu informatyki kwantowej do algorytmów ewolucyjnych, a zwłaszcza dotyczących tworzenia kwantowej populacji początkowej, kwantowych operatorów krzyżowania i mutacji oraz kwantowej selekcji znacznie poprawia dokładność paramentów modeli neuronalnych, co zostało zweryfikowane w środowisku MATLABA i Simulinka.
The paper presents selected results of the use of quantum computing to increase the degree of accuracy of evolutionary algorithms to improve the performance of models of neuronal movement of the end of the robot arm PR-02. For modeling, neural used SSN, which are designed and taught system models based on figures. ANN parameters, especially the elements of the matrix weights, biases, and the parameters of the activation function can be improved by using evolutionary algorithms. It turns out that the introduction of solutions in the field of quantum computing to evolutionary algorithms, especially for the creation of quantum initial population, quantum operators crossover and mutation, and quantum selection greatly improves the accuracy of modeling, as has been verified in the environment MATLAB and Simulink.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 88; 133-141
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronalne rozwoju systemu elektroenergetycznego. Część 2. Modele systemu IEEE RTS
Neuronal modeling of power system development. Part 2. Models of IEEE RTS system
Autorzy:
Tchórzewski, J.
Pytel, M.
Powiązania:
https://bibliotekanauki.pl/articles/376182.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
dane testowe IEEE RTS
rozwój systemu elektroenergetycznego
środowisko MATLABA i Simulinka
badanie wrażliwości
Opis:
W pracy zamieszczono wybrane wyniki badań dotyczące modelowania neuralnego rozwoju systemu elektroenergetycznego na bazie danych testowych IEEE RTS 96., m.in.: sposób tworzenia macierzy danych wejściowych oraz wyjściowych, sposób doboru parametrów sieci, itp. W wyniku projektowania i uczenia SSN uzyskano modele rozwoju SEE, które poddano badaniom wrażliwości m.in. na zmianę liczby warstw ukrytych oraz liczby neuronów w warstwie.
The paper presents selected results of research on the modeling of neural development of the power system test data based on the IEEE RTS 96, m.in .: how to create a matrix of data input and output, how to select the network parameters and the like. As a result of learning design and development of the ANN models were obtained SEE, which has been tested sensitivity among to change the number of hidden layers and the number of neurons in a layer.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2015, 82; 39-44
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości informatyki kwantowej do poprawy dokładności modelowania. Część 2 – KAE na przykładzie ruchu robota PR-02
Possibility of quantum computer to improve accuracy of modeling. Part 2. KAE on example on motion robot PR-02
Autorzy:
Tchórzewski, J.
Wołynka, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/377920.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
algorytmy ewolucyjne
środowisko MATLABA i Simulinka
robot PR-02
modelowanie systemów
informatyka kwantowa
Opis:
Artykuł zawiera wybrane wyniki badań dotyczące próby opracowania kwantowego algorytmu ewolucyjnego i jego implementacji w j. Matlab do poprawy parametrów modelu neuralnego ruchu ramienia robota PR-02. Populację początkową zbudowano na bazie macierzy wag sztucznej sieci neuronowej. Wylosowane wartości poszczególnych chromosomów populacji początkowej zostały przekształcone na wartości binarne, a te z kolei na wartości kwantowe przy wykorzystaniu opracowanej w tym celu funkcji quatization(). Wartość kwantowa genu została określona na podstawie silniejszego stanu czystego reprezentowanego przez podchromosomy, do czego została wykorzystana funkcja dequantization(). Selekcję osobników przeprowadzono na bazie modelu neuralnego ruchu robota PR-02 zaimplementowanego w j. Matlab jako funkcja calculationsNeuralNetworks().
The article contains selected results of research on trying to develop a quantum evolutionary algorithm and its implementation in Matlab to improve the parameters of the model of neural movement of the robot arm PR-02. The initial population is constructed on the basis of the matrix weights artificial neural network. The drawn values of individual initial population of chromosomes have been converted to binary values, and the latter value using quantum developed for this purpose function of quatization(). The value of the quantum of the gene was determined on the basis of a stronger state of pure represented by subchromosomes, what was used a function of dequantization(). Selection of individuals was carried out based on the model of neural traffic robot PR-02 implemented as a function of calculationsNeuralNetworks().
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 88; 143-152
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies