Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Spektrometria absorpcyjna" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Oznaczanie niklu i jego związków w środowisku pracy
Determination of nickel and its compounds in a working environment
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/2081925.pdf
Data publikacji:
2021-06-30
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
substancja rakotwórcza
stanowisko pracy
analiza powietrza
metoda oznaczania
absorpcyjna spektrometria atomowa
occupational exposure
carcinogen
workplace
air analysis
determination method
atomic absorption spectrometry
Opis:
WstępNikiel i jego związki w rozporządzeniu Parlamentu Europejskiego zwanym Rozporządzeniem CLP (Classification, Labelling and Packaging) zostały sklasyfikowane jako rakotwórcze. Substancje te występują w przemyśle przy produkcji stali i stopów oraz wytwarzaniu powłok ochronnych. W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) dla niklu i jego związków, wynosząca 0,25 mg/m3, ulegnie obniżeniu do 0,1 mg/m3. Celem tej pracy było opracowanie selektywnej metody oznaczania niklu i jego związków w powietrzu na stanowiskach pracy, służącej do oceny narażenia zawodowego, zgodnej z wymaganiami dla procedur oznaczania czynników chemicznych w środowisku pracy.Materiał i metodyW badaniach stosowano spektrometr absorpcji atomowej SOLAAR M (ThermoElectron Corporation, USA) przystosowany do pracy z płomieniem, wyposażony w lampę z katodą wnękową do oznaczania niklu.WynikiOpracowana metoda oznaczania polega na: pobraniu niklu i jego związków zawartych w powietrzu na filtr membranowy, mineralizacji filtra za pomocą stężonego kwasu azotowego(V) z dodatkiem kwasu chlorowodorowego i oznaczaniu niklu z wykorzystaniem absorpcyjnej spektrometrii atomowej. Do eliminacji interferencji metali: Fe, Co, Cr i Cu, stosowano bufor lantanowy o stężeniu lantanu 1%. Metoda umożliwia oznaczenie niklu w szerokim zakresie stężeń: 0,25–10,00 μg/ml. Stężenie charakterystyczne oznaczania niklu wyniosło 0,07 μg/ml. Granica jego oznaczalności wyniosła 0,012 μg/ml, a granica wykrywalności – 0,004 μg/ml. Średnia wartość współczynnika odzysku z filtra to 1,00.WnioskiOpracowana metoda oznaczania niklu i jego związków pozwala na selektywne oznaczanie tych substancji w powietrzu na stanowiskach pracy w zakresie stężeń 0,014–0,56 mg/m3 i 0,007–0,28 mg/m3 dla próbki powietrza o objętości 720 l oraz na oznaczanie tej substancji zarówno od 1/10 do 2 wartości NDS dla obecnie obowiązującej wartości wynoszącej 0,25 mg/m3, jak i dla 2,5 raza niższego normatywu higienicznego proponowanego do roku 2025 jako wiążącej wartości dopuszczalnej w UE. Metoda spełnia wymagania zawarte w normie PN-EN 482. Med. Pr. 2021;72(3):267–281
BackgroundNickel and its compounds have been classified as carcinogenic in a regulation of the European Parliament called the CLP Regulation (Classification, Labeling and Packaging). This substance is found in industry in the production of steel and alloys, and in the production of protective coatings. In Poland, the value of the maximum allowable concentration (MAC) for nickel and its compounds, amounting to 0.25 mg/m3, will be reduced to 0.1 mg/m3. The aim of the study was to develop a selective method for the determination of nickel and its compounds in the air at workplaces, used to assess occupational exposure and compliant with the requirements for procedures of determining chemical factors in the work environment.Material and MethodsThe atomic absorption spectrometer SOLAAR M (ThermoElectron Corporation, USA) was used in the research.ResultsThe developed determination method consists in sampling nickel and its compounds contained in the air onto a membrane filter, followed by filter mineralization with concentrated acid and the determination of nickel with the use of atomic absorption spectrometry. A 1% lanthanum buffer was used to eliminate the Fe, Co, Cr and Cu interference. The method enables the determination of nickel in a wide concentration range of 0.25–10.00 μg/ml. The characteristic concentration for the determination of nickel was 0.07 μg/ml. The limit of quantification was 0.012 μg/ ml and the limit of detection was 0.004 μg/ml. The average value of the filter recovery coefficient is 1.00.ConclusionsThe developed method for the determination of nickel and its compounds allows for a selective determination of this substance in the air at workplaces in the concentration range of 0.014–0.56 mg/m3 and 0.007–0.28 mg/m3 for an air sample with a volume of 720 l. It allows for the determination of this substance from 1/10 to 2 MAC values for the current mandatory value of 0.25 mg/m3 as well as for the 2.5 times lower hygienic standard proposed to be introduced by 2025 as binding limit value in the EU. The method meets the requirements of PN-EN 482. Med Pr. 2021;72(3):267–81
Źródło:
Medycyna Pracy; 2021, 72, 3; 267-281
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dichlorek cynku : metoda oznaczania w powietrzu na stanowiskach pracy
Zinc dichloride : determination in workplace air
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/137887.pdf
Data publikacji:
2019
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
cynk
rozpuszczalne związki cynku
absorpcyjna spektrometria atomowa
narażenie zawodowe
nauki o zdrowiu
inżynieria środowiska
zinc
soluble zinc compounds
atomic absorption spectrometry
occupational exposure
health sciences
environmental engineering
Opis:
Dichlorek cynku jest bardzo dobrze rozpuszczalny w wodzie. Stosowany jest w procesach galwanicznych, do impregnacji drewna, w przemyśle włókienniczym, w syntezie organicznej i do produkcji materiałów wybuchowych, np. świec dymnych. Dichlorek cynku wykazuje działanie: drażniące, żrące i uszkadzające oczy i błony śluzowe dróg oddechowych. Powoduje ciężkie zapalenie płuc, oparzenia skóry oraz ogólnoustrojowe zatrucie. Wartość najwyższego dopuszczalnego stężenia (NDS) dla frakcji wdychalnej dichlorku cynku wynosi 1 mg/m³ , a wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) – 2 mg/m³ . Celem pracy była nowelizacja normy PN-Z-04367:2008, dotyczącej oznaczania dichlorku cynku w powietrzu na stanowiskach pracy i opracowanie metody oznaczania dichlorku cynku zawartego we frakcji wdychalnej w powietrzu na stanowiskach pracy w zakresie od 1/10 do 2 wartości NDS. Opracowana metoda oznaczania polega na: pobraniu próbki powietrza na dwa filtry membranowe, wymywaniu dichlorku cynku z filtrów za pomocą wody dejonizowanej oraz oznaczaniu tego związku jako cynk metodą absorpcyjnej spektrometrii atomowej (F-AAS) z atomizacją w płomieniu powietrze-acetylen. Metoda pozwala na oznaczanie dichlorku cynku w powietrzu na stanowiskach pracy w zakresie stężeń 0,07 ÷ 2,17 mg/m³ (dla próbki powietrza o objętości 720 l), co odpowiada 0,1 ÷ 2,2 wartości NDS. Metoda charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur oznaczania substancji chemicznych. Metoda oznaczania dichlorku cynku została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Zinc chloride is very soluble in water. It is used in galvanic processes, for wood impregnation, in the textile industry, in organic synthesis and for the production of explosives, for example smoke candles. Zinc dichloride has an irritating, corrosive and damaging effect on the eyes, mucous membranes of the airways, causes severe pneumonia, skin burns and systemic poisoning. Maximum allowable concentration value (MAC) for the inhalable fraction of zinc dichloride in Poland is 1 mg/m³ and the short-term exposure limit value (STEL) is 2 mg/m³ . The aim of the study was to amend standard PN-Z-04367:2008 and to develop a method for determining zinc dichloride in workplace air in the range from 1/10 to 2 MAC values. The developed method of determination is based on taking a sample of air into two membrane filters, washing out zinc dichloride from the filters with deionized water and determining that compound as zinc by atomic absorption spectrometry (F-AAS) with atomization in air-acetylene flame. The method allows determination of zinc dichloride in the workplace air in the concentration range of 0.07–2.17 mg/m³ (for an air sample with a volume of 720 L, which corresponds to 0.1–2.2 of the MAC value. The method is characterized by good precision and accuracy and meets the requirements of European Standard PN-EN 482 for procedures for the determination of chemical substances. The method for the determination of zinc dichloride has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2019, 2 (100); 101-112
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wodorotlenek wapnia : metoda oznaczania w powietrzu na stanowiskach pracy
Calcium hydroxid : determination in workplace air
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/138314.pdf
Data publikacji:
2019
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
wapń i jego związki
absorpcyjna spektrometria atomowa
narażenie zawodowe
nauki o zdrowiu
inżynieria środowiska
calcium and its compounds
atomic absorption spectrometry
occupational exposure
health sciences
environmental engineering
Opis:
Wodorotlenek wapnia jest substancją stałą koloru białego. Jest stosowany w budownictwie, w przemyśle chemicznym, do oczyszczania wody i ścieków i do odsiarczania spalin. Związek powoduje poważne uszkodzenie oczu, działa drażniąco na skórę i może powodować podrażnienie dróg oddechowych. Wartość najwyższego dopuszczalnego stężenia (NDS) dla wodorotlenku wapnia, dla frakcji wdychalnej, została ustalona na poziomie 2 mg/m³ , a wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) – 6 mg/m³ . Dla frakcji respirabilnej zaś wartość NDS wynosi 1 mg/m³ , a wartość NDSCh – 4 mg/m³ . Celem pracy było opracowanie metody oznaczania stężeń wodorotlenku wapnia występującego w powietrzu na stanowiskach pracy, we frakcji wdychalnej i we frakcji respirabilnej, w zakresie od 1/10 do 2 wartości NDS, zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482 dla procedur oznaczania czynników chemicznych. Opracowana metoda oznaczania polega na: pobraniu wodorotlenku wapnia zawartego w powietrzu we frakcji wdychalnej i we frakcji respirabilnej aerozolu na filtry membranowe, mineralizacji filtrów z zastosowaniem stężonego kwasu azotowego oraz oznaczaniu wapnia w roztworach przygotowanych do analizy metodą absorpcyjnej spektrometrii atomowej z atomizacją w płomieniu acetylen-powietrze (F-AAS). Metoda umożliwia oznaczenie wapnia w powietrzu na stanowiskach pracy, w zakresie stężeń 0,50 ÷ 20,00 µg/ml. Uzyskana krzywa kalibracyjna wapnia charakteryzuje się wysoką wartością współczynnika korelacji (R2 = 1,0000). Granica wykrywalności wapnia (LOD) wynosi 0,1 ng/ml, natomiast granica oznaczalności (LOQ) wynosi 0,3 ng/ml. Wyznaczony współczynnik odzysku wyniósł 1,00. Opracowana metoda analityczna pozwala na oznaczanie stężenia wodorotlenku wapnia zawartego w powietrzu na stanowiskach pracy we frakcji wdychalnej w zakresie stężeń 0,10 ÷ 4,11 mg/m³ (dla próbki powietrza o objętości 720 l) i we frakcji respirabilnej w zakresie stężeń 0,07 ÷ 2,70 mg/m³ (dla próbki powietrza o objętości 684 l), co stanowi 0,05 ÷ 2,06 wartości NDS dla frakcji wdychalnej i 0,07 ÷ 2,7 wartości NDS dla frakcji respirabilnej. Metoda charakteryzuje się dobrą dokładnością i precyzją, a także spełnia wymagania zawarte w normie europejskiej PN-EN 482. Opracowana metoda oznaczania wodorotlenku wapnia została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Calcium hydroxide is a white color solid. It is used in construction, chemical industry, water purification and wastewater treatment, flue gas desulphurization. Calcium hydroxide causes serious damage to the eyes, irritates the skin and it can cause after-launch respiratory irritation. Maximum allowable concentration value (MAC) for calcium hydroxide in the work environment in Poland, for the inhalable and respirable fraction is 2 mg/m³ (STEL is 6 mg/m³ ) and 1 mg/m³ (STEL is 4 mg/m³ ), respectively. The aim of the study was to develop a method for determining the concentration of calcium hydroxide present in the inhalable and respirable fraction in the workplaces atmosphere, in the range from 1/10 to 2 MAC values in accordance with the requirements of European Standard PN-EN 482. The developed method is based on collecting, stopping calcium hydroxide (contained in the inhalable and the respirable fraction) on membrane filters, mineralizing filters with concentrated nitric acid and determining calcium of the resulted solution by atomic absorption spectrometry with atomization in acetylene-air flame (F-AAS). The described method allows the determination of calcium in workplace air concentrations in the range of 0.50–20.00 µg/ml. The calibration curve characterized by a high value of the correlation coefficient: R2 = 1.0000. The limit of detection (LOD) is 0.1 ng/ml and the limit of quantification (LOQ) is 0.3 ng/ml. The determined coefficient of recovery is 1.00. An analytical method allows the determination of the concentration of the calcium hydroxide present in the workplace air in the inhalable fraction in the concentration range of 0.10–4.11 mg/m³ (sample air volume 720 L) and in the reparable fraction in the concentration range 0.07–2.70 mg/m³ (for a sample air volume of 684 L), which represents 0.05–2.1 MAC value for the inhalable fraction and 0.07–2.7 MAC value for the respirable fraction. The method has good precision and accuracy and meets the requirements of European Standard PN-EN 482 for procedures for determining chemical agents. The method for determining calcium hydroxide has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2019, 2 (100); 139-150
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tlenek wapnia : metoda oznaczania w powietrzu na stanowiskach pracy
Calcium oxide : determination in workplace air
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/137527.pdf
Data publikacji:
2020
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
wapń i jego związki
tlenek wapnia
absorpcyjna spektrometria atomowa
narażenie zawodowe
nauki o zdrowiu
inżynieria środowiska
calcium and its compounds
calcium oxide
atomic absorption spectrometry
occupational exposure
health sciences
environmental engineering
Opis:
Tlenek wapnia jest stosowany w budownictwie, przemyśle chemicznym, cukrownictwie, garbarstwie, przemyśle mydlarskim i farbiarstwie. Jest używany również jako środek owadobójczy i nawóz sztuczny w rolnictwie. Związek działa toksycznie w sposób podobny do działania ługu sodowego: drażni skórę, działa parząco, powoduje bardzo bolesne i trudno gojące się rany. Może prowadzić do przebicia przegrody nosowej i zapalenia płuc. Jest szczególnie niebezpieczny dla oczu. Wartość najwyższego dopuszczalnego stężenia tlenku wapnia ustalono z uwzględnieniem frakcji; dla frakcji wdychalnej wartość NDS wynoszącą 2 mg/m³ i wartość NDSCh wynoszącą 6 mg/m³ , a dla frakcji respirabilnej wartość NDS wynoszącą 1 mg/m³ i wartość NDSCh wynoszącą 4 mg/m³ . W artykule przedstawiono metodę oznaczania stężeń tlenku wapnia występującego w powietrzu na stanowiskach pracy w zakresie 1/10 ÷ 2 wartości NDS. Metoda polega na: pobraniu tlenku wapnia zawartego w powietrzu we frakcjach na filtry membranowe, mineralizacji filtrów z zastosowaniem stężonego kwasu azotowego i oznaczaniu wapnia w roztworach przygotowanych do analizy metodą absorpcyjnej spektrometrii atomowej z atomizacją w płomieniu acetylen-powietrze (F-AAS). Opracowana metoda umożliwia oznaczenie wapnia w powietrzu na stanowiskach pracy w zakresie stężeń 0,50 ÷ 25,00 µg/ml. Uzyskana krzywa kalibracyjna wapnia charakteryzuje się wysoką wartością współczynnika korelacji (R2 = 0,9999). Granica oznaczalności wapnia (LOQ) wyniosła 1,4 ng/ml, a granica wykrywalności (LOD) 0,5 ng/ml. Wyznaczony współczynnik odzysku z filtrów wyniósł 1,00. Opracowana metoda analityczna umożliwia oznaczanie stężenia tlenku wapnia zawartego w powietrzu na stanowiskach pracy we frakcji wdychalnej w zakresie stężeń 0,10 ÷ 4,86 mg/m³ (dla próbki powietrza o objętości 720 l) i we frakcji respirabilnej w zakresie stężeń 0,10 ÷ 5,11 mg/m³ (dla próbki powietrza o objętości 684 l). Metoda charakteryzuje się dobrą dokładnością i precyzją i spełnia wymagania zawarte w normach europejskich PN-EN 482 i PN-EN 13890:2010 dla procedur oznaczania czynników chemicznych. Metoda oznaczania tlenku wapnia została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Calcium oxide is used in construction, the chemical industry, the sugar industry, tanning in the soap and dyeing industries. It is also used as an insecticide and fertilizer in agriculture. The compound is toxic in a similar way to caustic soda, irritates the skin, has a burning effect, causes very painful and difficult to heal wounds. May lead to puncture of the nasal septum and pneumonia. It is especially dangerous for the eyes. Currently, maximum allowable concentration value (MAC) for calcium oxide in the work environment in Poland has been determined taking into account the fraction; for inhalable fraction at 2 mg/m³ and STEL at 6 mg/m³ and for respirable fraction at 1 mg/m³ and STEL at 4 mg/m³ . The aim of the study was to develop a method for determining the concentration of calcium oxide in the workplaces atmosphere, in the range from 1/10 to 2 of NDS. The developed method is based on collecting, stopping calcium oxide, contained in the inhalable and the respirable fraction, on membrane filters, mineralizing filters with concentrated nitric acid and determining calcium of the resulted solution by atomic absorption spectrometry with atomization in acetylene-air flame (F-AAS). The method enables determination of calcium in the air at workplaces in the concentration range 0.50 - 25.00 µg/ml. The obtained calcium calibration curve has a high correlation coefficient (R2 = 0.9999). The limit of detection (LOD) is 0.5 ng/ml, whereas the limit of quantification (LOQ) is 1.4 ng/ml. The determined recovery factor was 1.00. The developed analytical method allows the determination of the concentration of calcium oxide contained in the workplace air in the inhalable fraction in the concentration range of 0.10 - 4.86 mg/m³ (for a sample air volume 720 l) and in the respirable fraction in the concentration range of 0.10 - 5.11 mg/m³ (for a sample air volume 684 l). The method has good precision and accuracy and meets the requirements of European Standards PN-EN 482 and PN-EN 13890:2010 for procedures for determining chemical agents. The method for determining calcium oxide was presented in the form of the analytical procedure (Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2020, 3 (105); 159-173
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Żelazowanad : metoda oznaczania w powietrzu na stanowiskach pracy
Ferrovanadium : determination in workplace air
Autorzy:
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/1845114.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
żelazowanad
żelazo i jego związki
wanad i jego związki
absorpcyjna spektrometria atomowa
narażenie zawodowe
nauki o zdrowiu
inżynieria środowiska
ferrovanadium
iron and its compounds
vanadium and its compounds
atomic absorption spectrometry
occupational exposure
health sciences
environmental engineering
Opis:
Żelazowanad należy do grupy żelazostopów stosowanych do produkcji stali węglowej, stali stopowej o wysokiej wytrzymałości, odpornej na temperaturę i skręcanie. Żelazowanad w postaci pyłu jest łagodnym środkiem drażniącym dla skóry i dróg oddechowych człowieka. Jednak wśród pracowników narażonych na żelazowanad stwierdzono zmiany patologiczne w układzie oddechowym. Wartość najwyższego dopuszczalnego stężenia (NDS) na stanowiskach pracy dla frakcji wdychalnej żelazowanadu wynosi 1 mg/m³, wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) wynosi 3 mg/m³. Przedstawiono metodę oznaczania żelazowanadu do oceny narażenia zawodowego na tę substancję w zakresie 1/10 ÷ 2 wartości NDS. Metoda polega na: pobraniu żelazowanadu zawartego w powietrzu na filtr, mineralizacji filtra w stężonym kwasie azotowym i chlorowodorowym oraz oznaczaniu żelaza i wanadu metodą płomieniową absorpcyjnej spektrometrii atomowej (AAS). Metoda umożliwia oznaczenie żelazowanadu zawartego w powietrzu na stanowiskach pracy we frakcji wdychalnej w zakresie stężeń 0,073 ÷ 2,06 mg/m³ (dla próbki powietrza o objętości 720 l). Uzyskana względna niepewność rozszerzona pomiaru żelazowanadu spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur stosowanych do oznaczania czynników chemicznych. Opracowana metoda umożliwia wykonywanie pomiarów zgodnie z zasadami dozymetrii indywidualnej. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
Ferrovanadium belongs to the group of ferroalloys used in the production of carbon steel, high-strength alloy steel. Ferrovanadium dust is a mild irritant to human skin and respiratory tract. However, pathological changes in various zones of the respiratory system were found among workers in the production of ferrovanadium. Currently, maximum allowable concentration value (MAC) for ferrovanadium in workplace air in Poland, for inhalable fraction, is at 1 mg/m³ and STEL at 3 mg/m³ . The article presents a method for determining concentrations of ferrovanadium in the range of 1/10–2 of the MAC. The method consists in collecting ferrovanadium contained in the air in fractions to filters, mineralization of filters with the use of concentrated acids and determination of iron and vanadium with atomic absorption spectrometry (AAS). The developed analytical method makes it possible to determine the inhalable fraction ferrovanadium in workplace air at the concentration range of 0.073–2.06 mg/m³ (for an 720-L air sample). The obtained relative expanded uncertainty of the measurement of ferrovanadium meets the requirements of Standard No. PN-EN 482. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 1 (107); 97-115
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Związki manganu, niklu i żelaza. Metoda oznaczania w powietrzu na stanowiskach pracy
Compounds of manganese, nickel and iron. Determination in workplace air
Autorzy:
Kowalska, Joanna
Surgiewicz, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/23352100.pdf
Data publikacji:
2021
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
związki manganu, niklu i żelaza
metoda analityczna
absorpcyjna spektrometria atomowa z atomizacją w płomieniu
powietrze na stanowiskach pracy
substancje rakotwórcze
nauki o zdrowiu
inżynieria środowiska
compounds of manganese, nickel and iron
determination method
flame atomic absorption spectrometry
workplace air
carcinogens
health sciences
environmental engineering
Opis:
Celem prac badawczych było opracowanie i walidacja metody oznaczania frakcji wdychalnej i respirabilnej związków manganu, niklu i żelaza w powietrzu na stanowiskach pracy. Metoda polega na pobraniu z powietrza na umieszczone w odpowiednim próbniku filtry z estrów celulozy frakcji wdychalnej i respirabilnej badanych związków. Filtry mineralizuje się w stężonym kwasie azotowym(V) i sporządza roztwór do analizy w rozcieńczonym kwasie azotowym(V). Zastosowanie różnej krotności rozcieńczania roztworu próbki po mineralizacji umożliwia wykorzystanie wyznaczonych zakresów krzywych wzorcowych przy oznaczaniu substancji jako mangan, nikiel i żelazo. Dodatek soli lantanu (buforu korygującego) zapobiega występowaniu interferencji chemicznych, użycie lampy deuterowej eliminuje interferencje tła. Opracowana metoda umożliwia oznaczanie wybranych substancji w powietrzu środowiska pracy w zakresach stężeń odpowiadających zakresowi 0,1 ÷ 2 obecnie obowiązujących wartości NDS i umożliwia również oznaczanie niklu i jego związków we frakcji wdychalnej dla obecnie proponowanej, nowej wartości najwyższego dopuszczalnego stężenia. Opracowana metoda została poddana walidacji zgodnie z wymaganiami zawartymi w normie PN-EN 482 i uzyskano dobre wyniki walidacyjne. Metoda może być wykorzystana do oceny narażenia zawodowego na związki niklu, manganu i żelaza w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania związków manganu, niklu i żelaza została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
The aim of this study was to develop and validate a method for determining of inhalable and respirable fraction of compounds of manganese, nickel and iron in workplace air. The method is based on passing the tested air through a filter from the cellulose ester mixture placed in a specific sampler. The filter mineralizes in concentrated nitric acid (V) and makes a solution for analysis in diluted nitric acid (V). The use of different dilutions of the sample solution after mineralization makes it possible to use the ranges of standard curves for the determination of substances as manganese, nickel and iron. The addition of lanthanum salt (correction buffer) prevents the occurrence of chemical interference, the use of deuterium lamp eliminates background interference. The developed method enables the determination of selected substances in the air of the working environment in the concentration ranges corresponding to the range from 0.1 to 2 MACs values and also enables the determination of nickel and its compounds in the inhalable fraction for the currently proposed new value of the maximum permissible concentration. The developed method has been validated in accordance with the requirements of Standard No. PN-EN 482 and good validation results were obtained. The method can be used for assessing occupational exposure to compounds of manganese, nickel and iron and associated risk to workers’ health. The developed method of determining compounds of manganese, nickel and iron has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2021, 4 (110); 191--222
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies