Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "reakcja" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Atroposelektywna synteza naturalnych chiralnych osiowo związków biarylowych. Część 2
Atroposelective synthesis of natural axially chiral biaryl compounds. Part 2
Autorzy:
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Powiązania:
https://bibliotekanauki.pl/articles/171989.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
chiralne osiowo biaryle
wewnątrzcząsteczkowa reakcja sprzęgania
międzycząsteczkowa reakcja sprzęgania
axially chiral biaryls
intramolecular coupling
intermolecular coupling
Opis:
A direct aryl-aryl coupling reaction is the most common method for the synthesis of axially chiral biaryls. Atroposelective coupling can be accomplished by three main strategies (Scheme 1) [1, 11]: a) intramolecular coupling reaction between two aryl substrates by the use of the chiral tether as a source of asymmetric information (Scheme 2), b) intermolecular reaction of the modified aryl compounds containing a chiral auxiliary. A source of chiral information can be a planar-chiral element, the chiral leaving group, and the chiral ortho substituent (Scheme 12, 16, 17), c) intermolecular coupling in the presence of chiral additives, for example, stoichiometric or catalytic oxidation in the presence of the transition metal complexes containing chiral ligands, and the redox-neutral coupling reactions catalyzed by transition metal complexes with chiral bidentate N/P- -ligands (Scheme 18, 20–22). These methods have been applied in the synthesis of various biologically active compounds. For example, Lipshutzet et al. obtained a fragment of the antibiotic vancomycin [15], and O-permethyltellimagrandin II [16]. Lin and coworkers synthesized (P)-kotanin [17], the natural metabolite from Aspergillus glaucus (Scheme 3). Waldvogel and coworkers [19] received steganacin derivative, a cytostatic drug (Scheme 5). Coleman et al. in the oxidative dimerization reaction of aryls with a chiral ortho substituents obtained a precursor in the synthesis of calphostin A (Scheme 8) [26]. Meyers and coworkers [27, 28] applied the Ullmann homocoupling for the synthesis of gossypol (Scheme 9). The oxidative coupling of phenols allows to obtain the natural precursor of nigerone (Scheme 13) [42]. Whereas the calphostin [18] derivative, an inhibitor of protein kinase C, was obtained by the oxidative coupling reaction (Scheme 4). The schizandrin [23] from Schisandra chinensis and isodiospyrin [24] from Diospyros morrisiana were obtained by intermolecular coupling reaction of aryl substrates with the chiral ortho substituents (Scheme 7).
Źródło:
Wiadomości Chemiczne; 2017, 71, 3-4; 199-217
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje utleniania. Część 1
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Oxidation reactions. Part 1
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Wróblewski, M.
Augustyńska, B.
Powiązania:
https://bibliotekanauki.pl/articles/172799.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
dehydrogenaza
monooksygenaza
reakcja utleniania
dehydrogenase
monooxygenase
oxidation reaction
Opis:
The main advantage of biotransformation involving enzymes, compared to chemical processes, is a highly selective formation of products with precise configuration. Herein we describe enzymes participating in the oxidation processes, especially dehydrogenases and monooxygenases. Dehydrogenases are not only able to catalyze the enantioselective reduction of prochiral ketones, but they can also desymmetrize meso and prochiral diols through the enantioselective oxidation. As a result of this processes, optically active hydroxyketones, hydroxycarboxylic acids, and their derivatives are obtained. Cytochrome P450 monooxygenases (CYPs) constitute a family of heme-containing enzymes which exhibits a variety of catalytic activities. They catalyze different reactions, such as hydroxylation, epoxidation, oxidative deamination, or N- and (S)-oxidation. In the oxidation reaction with monooxygenases, the whole cells are commonly used as catalysts. The use of monooxygenases in the oxidation reaction of prochiral alkanes provides the optically active alcohols. It is very significant that these transformations are still difficult to carry out by chemical methods. Baeyer-Villiger monooxygenases (BVMO EC 1.14.13.X) effectively catalyze the nucleophilic and electrophilic oxidation reactions of various functional groups. BVMO are highly regio- and stereoselective enzymes, and their catalytic potential is used in the synthesis of optically pure lactones and esters. Keywords:
Źródło:
Wiadomości Chemiczne; 2015, 69, 1-2; 35-51
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prolina : pospolity aminokwas wyjątkowy katalizator. Część IV, Reakcja Michaela
Proline as a common amino acid and an exceptional catalyst. Part IV, Michael reaction
Autorzy:
Karczmarska-Wódzka, A.
Studzińska, R.
Kołodziejska, R.
Wróblewski, M.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/171840.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
prolina
reakcja Michaela
synteza asymetryczna
proline
Michael reaction
asymmetric synthesis
Opis:
In recent years there has been a dynamic development of asymmetric synthesis. Groups of researchers, particularly the one led by Benjamin List and Carlos Barbas, carried out a number of reactions and showed the effectiveness of the use of small organic molecules such as proline as catalysts. Michael addition catalyzed with proline is a particularly interesting reaction because it can be carried out in two aminocatalytic pathways. The analysis of Michael reaction reveals potential for both forms of aminocatalysis: enamine and iminium catalysis (Scheme 1) [1–14]. Presumably Michael reaction proceeds mainly according to enamine mechanism. The use of proline in Michael reaction with imine activated acceptor is slightly effective. So far the researches have shown that the modification of proline molecule or addition of other catalyst is necessary for condensation to appear. Enamine catalysis concerns the activation of carbonyl compound in situ being a donor. There is no need for enolase anion to be created earlier [2, 15–17]. When, as a result of the reaction of a,b-unsaturated carbonyl compound with proline, Michael acceptor activation appears it means that it is enamine mechanism reaction (Scheme 1) [2, 24]. One of the first examples of direct Michael reaction proceeding through enamine transition state is the reaction of cyclopentanone with nitrostyrene (Scheme 6) [20–23]. Other examples of Michael addition of ketone with nitro olefin catalysed by proline are shown in table 2 and 3 [10, 23, 30]. Nitroketones obtained in that way are useful as precursors for different organic compounds [33], also pyrrolidines [34]. Pyrrolidines are pharmacologically active and they selectively block presynaptic dopamine receptors [34] (Scheme 7). Except for Michael intermolecular reaction, intramolecular condensation adducts were also obtained. Michael intramolecular proline-catalyzed condensation in which inactive ketones transform into α,β-unsaturated carbonyl compounds was described (Scheme 9) [35, 36]. These reactions require a stoichiometric amount of a catalyst and a long time of reaction and they give as a result a little enantiomeric excess [11, 24, 35]. In 1991, Yamaguchi and co-workers carried out malonates Michael addition to α, β-unsaturated aldehydes catalyzed by L-proline [24, 39]. The reaction proceeded according to enamine mechanism, for example dimethyl malonate was reacted with hex- 2-enal in the presence of proline to give Michael adduct in 44% yield. To improve the yield an attempt of a slight modification of a proline molecule was made transforming it into proper salt. Proline lithium salt enabled to obtain the condensation product in 93% yield (Tab. 4). Regardless of a used catalyst the products in the form of racemates were obtained. In order to improve enantioselective properties of a catalyst, Michael addition of diisopropyl malonate to cycloheptenone was carried out in chloroform in the presence of different proline salts. Optimal enantioselectivity and yield was obtained by using rubidium salt (Tab. 5–7) [40, 41]. Rubidium prolinate-catalyzed Michael additions are used in industry e.g. for enantioselective synthesis of the selective serotonine reuptake inhibitior (SSRI) (–)-paroxetine (antidepressant) (Scheme 12) [24].
Źródło:
Wiadomości Chemiczne; 2014, 68, 1-2; 49-65
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje utleniania. Część 2
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Oxidation reactions. Part 2
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Studzińska, R.
Wróblewski, M.
Augustyńska, B.
Powiązania:
https://bibliotekanauki.pl/articles/172457.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
dioksygenaza
oksydaza
peroksydaza
reakcja utleniania
dioxygenase
oxidase
peroxidase
oxidation reaction
Opis:
In continuation of our work, we herein describe next enzyme classes applied for oxidation reaction. Dioxygenases, oxidases, and peroxidases are successfully used in the synthesis of desymmetrization products with high yields and enantiomeric excesses. Aromatic dioxygenases, such as toluene dioxygenase (TDO), naphthalene dioxygenase (NDO), and biphenyl dioxygenase (BPDO) found in the prokaryotic microorganisms are enzymes belonging to the dioxygenase class and are the most commonly used in organic synthesis. The α-oxidation of various fatty acids in the presence of an α-oxidase from germinating peas is one of the few examples of oxidases application in asymmetric organic synthesis. The intermediary α-hydroxyperoxyacids can undergo two competing reactions: decarboxylation of the corresponding aldehydes or reduction to the (R)-2-hydroxy acids. In order to eliminate the competitive decarboxylation reaction tin(II) chloride is used as an in situ reducing agent. Peroxidases are the redox enzymes found in various sources such as animals, plants, and microorganisms. Due to the fact that, in contrast to monooxygenases, no additional cofactors are required, peroxidases are highly attractive for the preparative biotransformation. Oxidation reactions catalyzed by (halo)peroxydases are also often used in organic synthesis. N-Oxidation of amines, for instance, leads to the formation of the corresponding aliphatic N-oxides, aromatic nitro-, or nitrosocompounds. From a preparative synthesis standpoint, however, sulfoxidation of thioether is important since it was proven to proceed in a highly stereo- and enantioselective manner. Furthermore, depending on the source of haloperoxidase, chiral sulfoxides of opposite configurations can be obtained.
Źródło:
Wiadomości Chemiczne; 2015, 69, 1-2; 53-64
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prolina : pospolity aminokwas wyjątkowy katalizator. Część III, Reakcja Mannicha
Proline as a common amino acid and an exceptional catalyst. Part III, Mannich reaction
Autorzy:
Studzińska, R.
Karczmarska-Wódzka, A.
Wróblewski, M.
Kołodziejska, R.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/172649.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
prolina
reakcja Mannicha
synteza asymetryczna
proline
Mannich reaction
asymmetric synthesis
Opis:
Mannich reaction occuring among ketone, aldehyde, and amine is one of the ways of a synthesis of biologically active compounds. Reactions of this type were carried out in the presence of different catalysts [3–10], however in recent years a lot of attention has been paid to enantioselective Mannich reaction catalyzed with proline. Such reactions were carried out with the use of different compounds containing carbonyl group and the most frequently used amine was p-anisidine. The advantage of the use of p-anisidine is a possibility of conducting the direct Mannich reaction (Scheme 3). In this way β-amino ketones (Tab. 1, 2, 4) [15, 18–20, 23, 24], α-hydroxy-β-amino ketones (Tab. 3) [15, 22], and β-amino alcohols (Tab. 5, 6) [25, 26] were obtained. A possibility of syntheses of β-amino sugars and α-amino acids with their derivatives (Tab. 7) [28, 29] is worth noticing. In a great number of described reactions, the products were obtained with satisfactory yield and enantiomeric excess. Taking into consideration the difficulty of a removal of p-hydroxyphenyl group which protects amine group in the resulting products, the attempts of using different amine compounds in Mannich reactions catalyzed with proline were undertaken. The use of amines blocked by tert-butoxycarbonyl group (Boc) enabled to obtain the products with high yield and ee values (Tab. 12–15) [35–38]. However in the case of the use of Boc the reaction must be carried out in an indirect way (it is necessary to prepare imine blocked by Boc earlier).
Źródło:
Wiadomości Chemiczne; 2014, 68, 1-2; 21-48
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prolina – pospolity aminokwas wyjątkowy katalizator. Część II, Międzycząsteczkowa kondensacja aldolowa
Proline as a common amino acid and an exceptional catalyst. Part II, Intermolecular aldol reaction
Autorzy:
Kołodziejska, R.
Wróblewski, M.
Karczmarska-Wódzka, A.
Studzińska, R.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/171560.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
międzycząsteczkowa reakcja aldolowa donor
akceptor
prolina
anti-aldole
intermolecular aldol reaction
donor
acceptor
proline
anti-aldol
Opis:
Proline in organic synthesis is used as a small molecular organocatalyst. In a catalytic act proline, similarly to an enzyme, activates reagents, stabilizes transition state and influences an orientation of substrates [1–12]. Proline works as aldolase I (so called microaldolase I). In comparison with other amino acids it shows exceptional nucleophilicity which makes imines and enamines formation easier. In the intermolecular aldol reaction proline was used for the first time by List and co-workers (Scheme 1) [3, 9, 20]. Since then an immense progress has been observed in this field. Several aldolization reactions were performed in the presence of proline. Reactions of this type proceed between the donor (nucleophile) and the acceptor (electrophile). In aldol reaction the donors can be both ketones and aldehydes which next are condensed with ketones and aldehydes acting as electrophiles (Scheme 2–18; Tab. 1–7) [21–72]. The presence of proline ensures not only high yield of homo- and heteroaldolization but mainly enables conducting enantio- and diastereoselective synthesis. Intermolecular proline-catalyzed aldol condensation proceeds according to enamine mechanism. Anti-aldols, which make a valuable source of intermediates in the synthesis of important biologically active compounds, are mainly obtained in this reaction [35–44, 54, 58, 62, 63, 68, 69, 71].
Źródło:
Wiadomości Chemiczne; 2013, 67, 11-12; 1027-1050
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prolina – pospolity aminokwas wyjątkowy katalizator. Część I, Biosynteza proliny. Wewnątrzcząsteczkowa kondensacja aldolowa
Proline as a common amino acid and an exceptional catalyst. Part I, Proline biosynthesis. Intramolecular aldol reaction
Autorzy:
Wróblewski, M.
Kołodziejska, R.
Studzińska, R.
Karczmarska-Wódzka, A.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/172473.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
biosynteza proliny
mechanizm kondensacji aldolowej
wewnątrzcząsteczkowa reakcja aldolowa
proline biosynthesis
mechanism of aldol reaction
intramolecular aldol reaction
Opis:
In asymmetric synthesis of organic compounds more effective solutions are being looked for which will result in higher yield(s) of product(s) and their high enantioselectivity [1]. One of such solutions is an use of a multilevel and cheap catalyst. Proline used as a catalyst is a substance of natural origin which was synthetically obtained by Willstätter who was carrying out research on hygric acid (Scheme 1) [10]. The cells of many organisms have a suitable enzymatic system essential for proline biosynthesis [15]. So far, three proline biosynthesis pathways have been described: from glutamate (Scheme 3 and 4), ornithine (Scheme 5 and 6), and arginine (Scheme 7) [16–28]. Proline which is obtained as a result of biosynthesis or supplementation is a substrate for many proteins. Characteristic and significant content (about 23%) of this amino acid was observed in collage. In cells proline can play an important role of osmoregulator [31–35] – a protective substance regulating the activity of such enzymes as catalase and peroxidase [36]. Proline as a secondary amine shows exceptional nucleophilicity facilitating imine and enamine formation. Used as a catalyst in aldol reaction makes with substrates like imine or enamine transition state imitating the activity of naturally occurring enzymes for this type of reaction, that is aldolases. In their research Hajos and Parrish, and Eder, Sauer and Wiechert used proline in intramolecular aldol reaction obtaining proper enones (Scheme 9) [60–62]. The process of intramolecular aldol reaction was used for a separation of racemic mixture of diketones (Scheme 10) [63, 64], cyclization of ortho-substituted aromatic aldehydes and ketones (Scheme 11) [65], synthesis of cyclic diketones (Scheme 13) [68] and domino reaction to obtain substituted cyclohexanones from beta-diketones and unsaturated ketones (Scheme 14) [69].
Źródło:
Wiadomości Chemiczne; 2013, 67, 9-10; 801-818
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies