Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data traffic" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Określenie korzystnych okresów pomiarów wyrywkowych do wyznaczania średniego dobowego ruchu w roku
Determination of appropriate temporal range of the short duration traffic counts to determine the Annual Average Daily Traffic
Autorzy:
Spławińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/144130.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
drogi
pomiary ruchu
średni dobowy ruch w roku (SDR)
roads
traffic data collection
Annual Average Daily Traffic (AADT)
Opis:
Kluczową kwestią przeprowadzania pomiarów krótkotrwałych jest wybór odpowiedniego dnia pomiaru (dzień tygodnia, miesiąc w roku) oraz odpowiedniej długości okresu pomiarowego i godzin pomiarów. Odpowiednio dobrany okres pomiarowy wpływa na poprawę dokładności estymacji średniego dobowego ruchu w roku. W artykule określono najkorzystniejszy czasowy zakres przeprowadzania pomiarów wyrywkowych umożliwiający wiarygodne szacowanie średniego dobowego ruchu w roku przy uwzględnieniu rozkładu kierunkowego ruchu oraz rodzajów pojazdów.
A key issue in the traffic data collection is the selection of the proper day of measurement (day of week, month of the year) and the proper length of the counts period and hours of measurements. A properly selected measurement period improves the estimation accuracy of the Annual Average Daily Traffic. The article sets out the most appropriate temporal range of the short duration traffic counts, allows reliable estimate of the AADT, taking into account the directional distribution of traffic and types of vehicles.
Źródło:
Drogownictwo; 2015, 1; 23-28
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Factors determining seasonal variations in traffic volumes
Czynniki decydujące o zmienności sezonowej natężeń ruchu
Autorzy:
Spławińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/230710.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
droga
zarządzanie ruchem
natężenie ruchu
klasyfikacja
zbieranie danych
road
traffic management
traffic volume
classification
data collection
Opis:
The characteristics of seasonal variations in traffic volumes are used for a variety of purposes, for example to determine the basic parameters describing annual average daily traffic – AADT, and design hourly volume – DHV, analyses of road network reliability, and traffic management. Via these analyses proper classification of road sections into appropriate seasonal factor groups (SFGs) has a decisive influence on results. This article, on the basis of computational experiments (models of artificial neural networks, discriminatory analysis), aims to identify which factors have the greatest impact on the allocation of a section of road to the corresponding SFG, based on short-term measurements. These factors are presented as qualitative data: the Polish region, spatial relationships, functions of road, cross-sections, technical class; and quantitative data: rush hour traffic volume.
Ciągła automatyczna rejestracja ruchu drogowego dostarcza wielu cennych informacji niezbędnych do celów planistycznych, projektowych i eksploatacyjnych odcinków i skrzyżowań drogowych. Dzięki temu możliwe jest określenie sezonowych wahań ruchu umożliwiających wykonanie uproszczonych przeliczeń natężeń z pomiarów krótkotrwałych na średni dobowy ruch w roku (SDR). W praktyce, dokonuje się podziału sieci dróg na tzw. grupy zmienności sezonowej (SFG) i wyznacza się dla nich wskaźniki przeliczeniowe natężeń dobowych na SDR. Ponadto charakterystyki te wykorzystywane są w analizach niezawodności sieci dróg [17], w nowym podejściu wyznaczenia natężeń miarodajnych w oparciu o uogólnione koszty (analizy ekonomiczne) [2] a także są przydatne w podejmowaniu decyzji w Inteligentnych Systemach Transportowych i zarządzaniu ruchem. W Polsce obecnie wyróżnia się dwie grupy SFG tj. drogi o gospodarczym i turystyczno-rekreacyjnym charakterze przenoszonego ruchu [14], co w świetle wcześniejszych analiz [18, 19] wydaje się zbyt dużym uogólnieniem. Klasyfikacji odcinków do danej grupy dokonuje się na podstawie ruchu niedzielnego oraz wakacyjnego. Drogi o gospodarczym charakterze przenoszonego ruchu charakteryzują się występowaniem niewielkich sezonowych wahań ruchu oraz średnim dobowym ruchem w niedziele mniejszym niż 140% wartości średniego dobowego ruchu w dni robocze, natomiast drogi o turystyczno-rekreacyjnym charakterze – ruchem w miesiącach wakacyjnych (VII, VIII) ponad 40% większym od SDR lub średnim dobowym ruchem w niedziele większym niż 140% wartości średniego dobowego ruchu w dni robocze. Jak widać jest to bardzo nieprecyzyjna informacja trudna do stwierdzenia bez znajomości natężeń ruchu pochodzących z dłuższego okresu. Celem artykułu jest zatem określenie dla warunków polskich, jednoznacznych atrybutów umożliwiających przydzielenie odcinka drogi, na podstawie pomiarów krótkotrwałych, do odpowiedniej grupy zmienności sezonowej.
Źródło:
Archives of Civil Engineering; 2017, 63, 4; 35-50
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The problem of imputation of the missing data from the continuous counts of road traffic
Autorzy:
Spławińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/231354.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ruch drogowy
zbiór danych
przypisanie
dane brakujące
model SARIMA
road traffic
data collection
imputation
missing data
SARIMA model
Opis:
Missing traffic data is an important issue for road administration. Although numerous ways can be found to impute them in foreign literature (inter alia, the most effective method, that is Box-Jenkins models), in Poland, still only proven and simplified methods are applied. The article presents the analyses including an assessment of the completeness of the existing traffic data and works related to the construction of SARIMA model. The study was conducted on the basis of hourly traffic volumes, derived from the continuous traffic counts stations located in the national road network in Poland (Golden River stations) from the years 2005 – 2010. As a result, the proposed model was used to impute the missing data in the form of SARIMA (1.1,1)(0,1,1)168. The newly developed model can be used effectively to fill in the missing required days of measurement for estimating AADT by AASHTO method. In other cases, due to its accuracy and laboriousness of the process, it is not recommended.
Źródło:
Archives of Civil Engineering; 2015, 61, 1; 131-145
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies