- Tytuł:
-
The use of artificial intelligence methods for optimization of tractive properties on silty clay loam
Metody sztucznej inteligencji w optymalizacji wybranych właściwości trakcyjnych na glebach gliniastych - Autorzy:
-
Pieczarka, K.
Pentoś, K.
Lejman, K.
Owsiak, Z. - Powiązania:
- https://bibliotekanauki.pl/articles/334663.pdf
- Data publikacji:
- 2018
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
- Tematy:
-
traction force
traction efficiency
artificial neural network
genetic algorithm
siła trakcyjna
sprawność trakcyjna
sztuczne sieci neuronowe
algorytm ewolucyjny - Opis:
-
The aim of this study was to develop valuable model of the interaction between low-power tractors wheel and deformed ground as well as to optimize tractor performance on silty clay loam. The relationships between traction force as well as traction efficiency and soil moisture, soil compaction, horizontal deformation, and vertical load were the subject of investigation. The research was carried out in the laboratory conditions. The two soft computing techniques of mathematical modeling were used: multilayer perceptron and radial basis function neural network. The more efficient model was obtained by multilayer perceptron. For the model with traction force as the output parameter the coefficient of determination was equal to 0,963 (MLP model) and 0,907 (RBF model). For the model with traction efficiency as the output parameter the coefficient of determination was equal to 0,986 and 0,944, respectively. Using the MLP model, the sensitivity analysis was conducted. The highest relative influence on traction force was observed for vertical load, in the case of traction efficiency, horizontal deformation is the most important parameter. For both dependent variables the lowest influence was calculated for soil compaction. The optimization of tractive properties requires generally high horizontal deformation, average soil moisture and high soil compaction. High vertical load is necessary for traction force maximization and relatively low for traction efficiency optimization.
Celem pracy było wygenerowanie możliwie dokładnych modeli opisujących interakcję układu opona napędowa–gleba gliniasta dla mikrociągnika. Na podstawie wygenerowanych modeli przeprowadzono optymalizację pracy analizowanego układu. Badaniom podlegały zależności między siłą i sprawnością trakcyjną a wilgotnością i zwięzłością gleby, deformacją poziomą i obciążeniem pionowym. Badania przeprowadzono w warunkach laboratoryjnych. W zadaniu modelowania matematycznego wykorzystano dwie techniki sztucznej inteligencji: sieć neuronową typu perceptron wielowarstwowy (MLP) oraz sieć neuronową z radialnymi funkcjami bazowymi (RBF). Bardziej dokładny okazał się model oparty o sieć MLP. Współczynnik determinacji opisujący jakość modelu w przypadku siły trakcyjnej wynosił 0,963 (model MLP) i 0,907 (model RBF). W przypadku sprawności trakcyjnej współczynnik determinacji wyniósł odpowiednio 0,986 i 0,944. Wykorzystując modele oparte na sieci MLP przeprowadzono analizę wrażliwości modeli. Analiza ta wykazała, że największy wpływ na siłę trakcyjną ma obciążenie pionowe, a w przypadku sprawności trakcyjnej najbardziej znaczącym parametrem jest deformacja pozioma. Dla obu zmiennych zależnych, najmniej znaczącym parametrem jest zwięzłość gleby. Optymalizacja parametrów trakcyjnych wymaga generalnie dużej wartości deformacji poziomej, średniej wartości wilgotności i dużej zwięzłości gleby. Maksymalizacja siły trakcyjnej jest możliwa przy dużej wartości obciążenia pionowego, a optymalną wartość sprawności trakcyjnej można uzyskać przy niskiej wartości obciążenia pionowego. - Źródło:
-
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 1; 63-68
1642-686X
2719-423X - Pojawia się w:
- Journal of Research and Applications in Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki