Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Czajkowski, G." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Hermite polynomials application for expanding functions in the series by these polynomials
Zastosowanie wielomianów Hermite’a do rozwijania funkcji w szeregi według tych wielomianów
Autorzy:
Czajkowski, A. A.
Skorny, G. P.
Oleszak, W. K.
Powiązania:
https://bibliotekanauki.pl/articles/135860.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
Hermite polynomials
function of complex variable
expanding functions in a series
wielomiany Hermite’a
funkcja zmiennej zespolonej
rozwijanie funkcji w szereg
Opis:
Introduction and aim: Selected elementary material about Hermite polynomials have been shown in the paper. The algorithm of expanding functions in the series by Hermite polynomials has been elaborated in the paper. Material and methods: The selected knowledge about Hermite polynomials have been taken from the right literature. The analytical method has been used in this paper. Results: Has been shown the theorem describing expanding functions in a series by using Hermite polynomials. It have been shown selected examples of expanding functions in a series by applying Hermite polynomials, e.g. functions exp(az), sgn(z) and z2p. Conclusion: The function f(z) can be expand in the interval (-∞+∞) in a series according to Hermite polynomials where the unknown coefficients can be determined from the orthogonality of Hermite polynomials.
Wstęp i cel: W pracy pokazuje się wybrane podstawowe wiadomości o wielomianach Hermite’a. W artykule opracowano algorytm rozwijania funkcji w szereg według wielomianów Hermite’a. Materiał i metody: Wybrane wiadomości o wielomianach Hermite’a zaczerpnięto z literatury przedmiotu. W pracy zastosowano metodę analityczną. Wyniki: W pracy pokazano twierdzenie dotyczące rozwijania funkcji w szereg według wielomianów Hermite’a. Pokazano wybrane przykłady rozwijania funkcji w szereg według wielomianów Hermite’a m.in. funkcji exp(az), sgn(z) oraz z2p. Wniosek: Funkcja f(z) może być w przedziale (-∞,+∞) rozwinięta w szereg według wielomianów Hermite’a, gdzie nieznane współczynniki można wyznaczyć korzystając z ortogonalności wielomianów Hermite’a.
Źródło:
Problemy Nauk Stosowanych; 2017, 6; 67-76
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the second-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych drugiego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Skorny, G. P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135822.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the second order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania drugiego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to make some graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing linear, homographic, logarithmic and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytm analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto dodatkowym celem jest interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiażanich równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o zmiennych współczynnikach zawierających funkcje liniowe, homograficzne, logarytmiczne i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 21-38
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies