Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "induced-hereditary" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Prime ideals in the lattice of additive induced-hereditary graph properties
Autorzy:
Berger, Amelie
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743387.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary graph property
prime ideal
distributive lattice
induced subgraphs
Opis:
An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove that the prime ideals of the lattice of all additive induced-hereditary properties are divided into two groups, determined either by a set of excluded join-irreducible properties or determined by a set of excluded properties with infinite join-decomposability number. We provide non-trivial examples of each type.
Źródło:
Discussiones Mathematicae Graph Theory; 2003, 23, 1; 117-127
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
Autorzy:
Broere, Izak
Bucko, Jozef
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743535.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary properties
reducibility
divisibility
uniquely partitionable graphs.
Opis:
Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition {V₁,V₂,...,Vₙ} of V(G) such that $G[V_i] ∈ _i$ for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if $_i$ and $_j$ are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ {1,2,...,n}.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 31-37
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gallais innequality for critical graphs of reducible hereditary properties
Autorzy:
Mihók, Peter
Skrekovski, Riste
Powiązania:
https://bibliotekanauki.pl/articles/743466.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
additive induced-hereditary property of graphs
reducible property of graphs
critical graph
Gallai's Theorem
Opis:
In this paper Gallai's inequality on the number of edges in critical graphs is generalized for reducible additive induced-hereditary properties of graphs in the following way. Let $₁,₂,...,ₖ$ (k ≥ 2) be additive induced-hereditary properties, $ = ₁ ∘ ₂ ∘ ... ∘ₖ$ and $δ = ∑_{i=1}^k δ(_i)$. Suppose that G is an -critical graph with n vertices and m edges. Then 2m ≥ δn + (δ-2)/(δ²+2δ-2)*n + (2δ)/(δ²+2δ-2) unless = ² or $G = K_{δ+1}$. The generalization of Gallai's inequality for -choice critical graphs is also presented.
Źródło:
Discussiones Mathematicae Graph Theory; 2001, 21, 2; 167-177
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unique factorization theorem
Autorzy:
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743745.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced-hereditary
additive property of graphs
reducible property of graphs
unique factorization
uniquely partitionable graphs
generating sets
Opis:
A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let ₁,₂, ...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable (G has property ₁ º₂ º... ºₙ) if the vertex set V(G) of G can be partitioned into n sets V₁,V₂,..., Vₙ such that the subgraph $G[V_i]$ of G induced by V_i belongs to $_i$; i = 1,2,...,n. A property is said to be reducible if there exist properties ₁ and ₂ such that = ₁ º₂; otherwise the property is irreducible. We prove that every additive and induced-hereditary property is uniquely factorizable into irreducible factors. Moreover the unique factorization implies the existence of uniquely (₁,₂, ...,ₙ)-partitionable graphs for any irreducible properties ₁,₂, ...,ₙ.
Źródło:
Discussiones Mathematicae Graph Theory; 2000, 20, 1; 143-154
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Universality in Graph Properties with Degree Restrictions
Autorzy:
Broere, Izak
Heidema, Johannes
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/30146518.pdf
Data publikacji:
2013-07-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
countable graph
universal graph
induced-hereditary
k-degenerate graph
graph with colouring number at most k + 1
graph property with assignment
Opis:
Rado constructed a (simple) denumerable graph R with the positive integers as vertex set with the following edges: For given m and n with m < n, m is adjacent to n if n has a 1 in the m’th position of its binary expansion. It is well known that R is a universal graph in the set ℐc of all countable graphs (since every graph in ℐc is isomorphic to an induced subgraph of R). A brief overview of known universality results for some induced-hereditary subsets of ℐc is provided. We then construct a k-degenerate graph which is universal for the induced-hereditary property of finite k-degenerate graphs. In order to attempt the corresponding problem for the property of countable graphs with colouring number at most k + 1, the notion of a property with assignment is introduced and studied. Using this notion, we are able to construct a universal graph in this graph property and investigate its attributes.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 3; 477-492
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies