Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Meng, Wei" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Arc-Disjoint Hamiltonian Paths in Strong Round Decomposable Local Tournaments
Autorzy:
Meng, Wei
Powiązania:
https://bibliotekanauki.pl/articles/32083838.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
local tournament
round-decomposable
arc-disjoint Hamiltonian paths
Opis:
Thomassen, [Edge-disjoint Hamiltonian paths and cycles in tournaments, J. Combin. Theory Ser. B 28 (1980) 142–163] proved that every strong tournament has a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices if and only if it is not an almost transitive tournament of odd order. As a subclass of local tournaments, Li et al. [Arc-disjoint Hamiltonian cycles in round decomposable local tournaments, Discuss. Math. Graph Theory 38 (2018) 477–490] confirmed the existence of such two paths in 2-strong round decomposable local tournaments. In this paper, we show that every strong, but not 2-strong, round decomposable local tournament contains a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices except for three classes of digraphs. Thus Thomassen's result is partly extended to round decomposable local tournaments. In addition, we also characterize strong round digraphs which contain a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 297-310
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the n-Partite Tournaments with Exactly n − m + 1 Cycles of Length m
Autorzy:
Guo, Qiaoping
Meng, Wei
Powiązania:
https://bibliotekanauki.pl/articles/32083764.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
multipartite tournaments
tournaments
cycles
Opis:
Gutin and Rafiey [Multipartite tournaments with small number of cycles, Australas J. Combin. 34 (2006) 17–21] raised the following two problems: (1) Let m ∈ {3, 4, . . ., n}. Find a characterization of strong n-partite tournaments having exactly n − m + 1 cycles of length m; (2) Let 3 ≤ m ≤ n and n ≥ 4. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly n − m + 1 cycles of length m for two values of m? In this paper, we discuss the strong n-partite tournaments D containing exactly n − m + 1 cycles of length m for 4 ≤ m ≤ n − 1. We describe the substructure of such D satisfying a given condition and we also show that, under this condition, the second problem has a negative answer.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 75-82
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Outpaths of Arcs in Regular 3-Partite Tournaments
Autorzy:
Guo, Qiaoping
Meng, Wei
Powiązania:
https://bibliotekanauki.pl/articles/32222728.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
multipartite tournament
regular 3-partite tournament
out-paths
Opis:
Guo [Outpaths in semicomplete multipartite digraphs, Discrete Appl. Math. 95 (1999) 273–277] proposed the concept of the outpath in digraphs. An outpath of a vertex x (an arc xy, respectively) in a digraph is a directed path starting at x (an arc xy, respectively) such that x does not dominate the end vertex of this directed path. A k-outpath is an outpath of length k. The outpath is a generalization of the directed cycle. A c-partite tournament is an orientation of a complete c-partite graph. In this paper, we investigate outpaths of arcs in regular 3-partite tournaments. We prove that every arc of an r-regular 3-partite tournament has 2- (when r ≥ 1), 3- (when r ≥ 2), and 5-, 6-outpaths (when r ≥ 3). We also give the structure of an r-regular 3-partite tournament D with r ≥ 2 that contains arcs which have no 4-outpaths. Based on these results, we conjecture that for all k ∈ {1, 2, . . ., r − 1}, every arc of r-regular 3-partite tournaments with r ≥ 2 has (3k − 1)- and 3k-outpaths, and it has a (3k + 1)-outpath except an r-regular 3-partite tournament.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 893-904
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies