Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dynamical systems" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Controllability of dynamical systems. A survey
Autorzy:
Klamka, J.
Powiązania:
https://bibliotekanauki.pl/articles/202396.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
controllability
dynamical systems
control theory
Opis:
The main objective of this article is to review the major progress that has been made on controllability of dynamical systems over the past number of years. Controllability is one of the fundamental concepts in the mathematical control theory. This is a qualitative property of dynamical control systems and is of particular importance in control theory. A systematic study of controllability was started at the beginning of sixties in the last century, when the theory of controllability based on the description in the form of state space for both time-invariant and time-varying linear control systems was worked out. Roughly speaking, controllability generally means, that it is possible to steer a dynamical control system from an arbitrary initial state to an arbitrary final state using the set of admissible controls. It should be mentioned, that in the literature there are many different definitions of controllability, which strongly depend on a class of dynamical control systems and on the other hand on the form of admissible controls. Controllability problems for different types of dynamical systems require the application of numerous mathematical concepts and methods taken directly from differential geometry, functional analysis, topology, matrix analysis and theory of ordinary and partial differential equations and theory of difference equations. In the paper we use mainly state-space models of dynamical systems, which provide a robust and universal method for studying controllability of various classes of systems. Controllability plays an essential role in the development of modern mathematical control theory. There are various important relationships between controllability, stability and stabilizability of linear both finite-dimensional and infinite-dimensional control systems. Controllability is also strongly related to the theory of realization and so called minimal realization and canonical forms for linear time-invariant control systems such as the Kalmam canonical form, the Jordan canonical form or the Luenberger canonical form. It should be mentioned, that for many dynamical systems there exists a formal duality between the concepts of controllability and observability. Moreover, controllability is strongly connected with the minimum energy control problem for many classes of linear finite dimensional, infinite dimensional dynamical systems, and delayed systems both deterministic and stochastic. Finally, it is well known, that controllability concept has many important applications not only in control theory and systems theory, but also in such areas as industrial and chemical process control, reactor control, control of electric bulk power systems, aerospce engineering and recently in quantum systems theory.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2013, 61, 2; 335-342
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Constrained controllability of second order dynami cal systems with delay
Autorzy:
Klamka, J.
Powiązania:
https://bibliotekanauki.pl/articles/205540.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
controllability
second-order dynamical systems
delayed control systems
semilinear control systems
constrained controls
Opis:
The paper considers finite-dimensional dynami cal control systems described by second order semilinear stationary ordinary differential state equations with delay in control. Using a generalized open mapping theorem, sufficient conditions for constrained local controllability in a given time interval are formulated and proved. These conditions require verification of constrained global controllability of the associated linear first-order dynamical control system. It is generally assumed that the values of admissible controls are in a convex and closed cone with vertex at zero. Moreover, several remarks and comments on the existing results for controllability of semilinear dynamical control systems are also presented. Finally, a simple numerical example which illustrates theoretical considerations is also given. It should be pointed out that the results given in the paper extend for the case of semilinear second-order dynamical systems constrained controllability conditions, which were previously known only for linear second-order systems.
Źródło:
Control and Cybernetics; 2013, 42, 1; 111-121
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximate constrained controllability of mechanical system
Sterowanie minimalno-czasowe manipulatorów hydraulicznych po zadanej ścieżce
Autorzy:
Klamka, J.
Powiązania:
https://bibliotekanauki.pl/articles/279817.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
linear infinite-dimensional control systems
mechanical flexible structure vibratory systems
controllability of abstract dynamical systems
Opis:
In the present paper approximate constrained controllability of linear abstract second-order infinite-dimensional dynamical control systems is considered. First, fundamental definitions and notions are recalled. Next it is proved, using the so-called frequency-domain method, that approximate constrained controllability of second-order dynamical control system can be verified by the approximate constrained controllability conditions for the simplified, suitably defined first-order linear dynamical control system. General results are then applied for approximate constrained controllability investigation of mechanical flexible structure vibratory dynamical system. Some special cases are also considered. Moreover, many remarks, comments and corollaries on the relationships between different concepts of approximate controllability are given. Finally, the obtained results are applied for investigation of approximate constrained controllability for flexible mechanical structure. In this case linear second-order partial differential state equation describes the transverse motion of an elastic beam which occupies the given finite interval.
Praca przedstawia metodę optymalizacji minimalno-czasowej ruchów manipulatorów hydraulicznych, po zadanej ścieżce członu roboczego. Zakładane jest, że ścieżka członu roboczego jednoznacznie określa odpowiadającą jej ścieżkę manipulatora w zmiennych uogólnionych. Optymalizacja sprowadza się wówczas do znalezienia optymalnego rozkładu parametru ścieżki w czasie. Proponowana metoda optymalizacji polega na przybliżeniu ciągłego rozkładu parametru zbiorem punktów, a następnie znalezieniu ich optymalnych położeń metodami programowania nieliniowego z ograniczeniami. Zakładana jest przy tym nieściśliwość cieczy hydraulicznej, w celu przyspieszenia obliczeń. Załączone są wyniki przykładowych optymalizacji, wykonanych na modelu trójczłonowej koparki hydraulicznej.
Źródło:
Journal of Theoretical and Applied Mechanics; 2005, 43, 3; 539-554
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On controllability of second order dynamical systems – a survey
Autorzy:
Klamka, J.
Wyrwał, J.
Zawiski, R.
Powiązania:
https://bibliotekanauki.pl/articles/202359.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
exact controllability
approximate controllability
second-order dynamical systems
infinite dimensional systems
semilinear systems
sterowalność
układ nieskończenie wymiarowy
system półliniowy
Opis:
The paper presents a survey of recent results in the area of controllability of second order dynamical systems. Controllability problem for finite and infinite dimensional, linear, semilinear, deterministic and stochastic dynamical systems (with delays and undelayed) is taken into consideration. Different types of controllability are discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 3; 279-295
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stan badań w zakresie teorii sterowania
State of research in control theory
Autorzy:
Klamka, J.
Powiązania:
https://bibliotekanauki.pl/articles/153744.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
układy dynamiczne
układy liniowe
układy z opóźnieniami
układy o parametrach rozłożonych
układy nieliniowe
dynamical systems
linear systems
delayed systems
distributed parameter systems
nonlinear systems
Opis:
Niniejsze opracowanie poświęcone jest analizie aktualnego stanu badań oraz perspektywom rozwoju teorii sterowania w uczelniach i instytutach naukowych. Celem opracowania jest podjecie próby wytyczenia głównych kierunków działalności naukowo-badawczej oraz ich koordynacja. Teoria sterowania jest uprawiana w kilkunastu ośrodkach krajowych, w większości w wyższych uczelniach technicznych oraz w instytutach badawczych Polskiej Akademii Nauk. W artykule rozpatrywane są zarówno skończenie wymiarowe układy dynamiczne liniowe ciągłe i dyskretne jak i nieliniowe układy dynamiczne. W przypadku układów liniowych wyróżnia się miedzy innymi układy osobliwe oraz w przypadku układów dyskretnych układy o wielu zmiennych niezależnych. Przedstawione są także układy nieskończenie-wymiarowe opisane równaniami różniczkowymi cząstkowymi oraz skończenie wymiarowe układy dynamiczne z różnego typu opóźnieniami zarówno w stanie, jak i w sterowaniu.
The presented paper is devoted to analysis of research in the domain of control theory and development perspectives of control theory in technical high schools and research institutes of the Polish Academy of Sciences. The main research directions in mathematical control theory are pointed out. It should be stressed that control theory is developed in several universities and institutes. The paper contains many remarks and comments concerning control theory of finite-dimensional dynamical systems both for linear continuous-time and discrete-time as well as nonlinear dynamical systems. In the case of linear systems there are distinguished, among others, singular systems and in the case of discrete-time systems - systems with many independent variables. Moreover, infinite-dimensional dynamical systems and systems with different types of delays in the state variables and in the admissible controls are also considered. There are also presented in the paper: linear finite-dimensional dynamical systems, multidimensional systems and automatic control, distributed parameter dynamical systems, shape optimisation, dynamical systems with delays, special flying machines, nonlinear dynamical systems, multi-criterion optimisation.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 11, 11; 1436-1440
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies