Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jurczyk, K." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Experiments with three-dimensional radar reflectivity data assimilation into the COAMPS model
Autorzy:
Jakubiak, B.
Szturc, J.
Ośródka, K.
Jurczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/108601.pdf
Data publikacji:
2014
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
weather radar
numerical weather prediction
radar reflectivity
quality control
assimilation
Opis:
High temporal and spatial resolution of radar measurements enables to continuously observe dynamically evolving meteorological phenomena. Three-dimensional (3D) weather radar reflectivity data assimilated into the numerical weather prediction model has the potential to improve initial description of the atmospheric model state. The paper is concentrated on the development of radar reflectivity assimilation technique into COAMPS mesoscale model using an Ensemble Kalman Filter (EnKF) type assimilation schemes available in Data Assimilation Research Testbed (DART) programming environment. Before weather radar data enter into the assimilation system, the measurement errors are eliminated through quality control procedures. At first artifacts associated with non-meteorological errors are removed using the algorithms based on analysis of reflectivity field pattern. Then procedures for correction of the reflectivity data are employed, especially due to radar beam blockage and attenuation in rain. Each of the correction algorithms is connected with generation of the data quality characteristic expressed quantitatively by so called quality index (QI). In order to avoid transformation of data uncertainty into assimilation scheme only the radar gates successfully verified by means of the quality algorithms were employed in the assimilation. The proposed methodology has been applied to simulate selected intense precipitation events in Poland in May and August 2010.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2014, 2, 1; 43-54
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Precipitation estimation and nowcasting at IMGW-PIB (SEiNO system)
Autorzy:
Szturc, J.
Jurczyk, A.
Ośródka, K.
Wyszogrodzki, A.
Giszterowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/108484.pdf
Data publikacji:
2018
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
opad atmosferyczny
prognoza probabilistyczna
szacowanie
opad
dane
wysoka rozdzielczość
precipitation
nowcasting
probabilistic forecast
precipitation estimation
high-resolution data
Opis:
A System for the Estimation and Nowcasting of Precipitation (SEiNO) is being developed at the Institute of Meteorology and Water Management – National Research Institute. Its aim is to provide the national meteorological and hydrological service with comprehensive operational tools for real-time high-resolution analyses and forecasts of precipitation fields. The system consists of numerical models for: (i) precipitation field analysis (estimation), (ii) precipitation nowcasting, i.e., extrapolation forecasting for short lead times, (iii) generation of probabilistic nowcasts. The precipitation estimation is performed by the conditional merging of information from telemetric rain gauges, the weather radar network, and the Meteosat satellite, employing quantitative quality information (quality index). Nowcasts are generated by three numerical models, employing various approaches to take account of different aspects of convective phenomena. Probabilistic forecasts are computed based on the investigation of deterministic forecast reliability determined in real time. Some elements of the SEiNO system are still under development and the system will be modernized continuously to reflect the progress in measurement techniques and advanced methods of meteorological data processing.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2018, 6, 1; 1-12
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MeteoGIS: GIS-based system for monitoring of severe meteorological phenomena
Autorzy:
Jurczyk, A.
Ośródka, K.
Szturc, J.
Giszterowicz, M.
Przeniczny, P.
Tkocz, G.
Powiązania:
https://bibliotekanauki.pl/articles/108449.pdf
Data publikacji:
2015
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
meteorological data
weather radar
GIS
monitoring
nowcasting
Opis:
The MeteoGIS system developed at the Institute of Meteorology and Water Management – National Research Institute in Poland is a GIS-based system for real-time monitoring of weather and the generation of meteorological warnings. Apart from its monitoring features, it can also provide more advanced analysis, including SQL (Structured Query Language) queries and statistical analyses. Input data are provided mainly by the INCA-PL 2 nowcasting model which employs forecasts from the high-resolution AROME numerical weather prediction model and measurement data from the Polish weather radar network POLRAD and surface meteorological stations. As well as this, data from the PERUN lighting detection system are used. Ingestion of such data allows for the mitigation of risk from potentially hazardous weather phenomena such as extreme temperatures, strong wind, thunderstorms, heavy rain and subsequent impending floods. The following meteorological parameters at ground level are visualised in the MeteoGIS: (i) precipitation (accumulation and type), (ii) temperature, (iii) wind (speed and direction), (iv) lightning (locations and type). End users of the system are workers from civil protection services who are interested in shortterm warnings against severe weather events, especially area-oriented ones (related to districts, catchments, etc.). The reliability of visualised data is a very important issue, and from the MeteoGIS user’s point of view the improvement in data quality is a continuous process.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2015, 3, 2; 49-61
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies