Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Glinka, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Silniki elektryczne z magnesami trwałymi umieszczonymi na wirniku
Electric motors with permanent magnets placed in the rotor
Autorzy:
Glinka, T.
Jakubiec, M.
Powiązania:
https://bibliotekanauki.pl/articles/1374813.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Napędów i Maszyn Elektrycznych Komel
Tematy:
silniki elektryczne
magnesy trwałe
wirnik
Opis:
Electric motors with permanent magnets placed along rotor's circumference may operate as: -synchronous motors with permanent magnets (PM SM) -sinusoidally controlled brushless dc motors with permanent magnets (PMDC BMSC) -trapezoidally controlled brushless dc motors with permanent magnets (PMDC BMTC). In each case the electromechanical properties of the drive are different, this is influenced by the control method and electromagnetic field distribution in the armature slot. The induction distribution should induce sinusoidal rotation voltage in the armature winding of PMSM and PMDCBMSC and trapezoidal rotation voltage in PMDCBMTC, respectively. Synchronous motors are supplied with voltage of set (forced) frequency. The rotational speed is controlled by changing the supply voltage frequency. The mathematical model of synchronous motors in steady and quasi-steady states is given in Equations (2-10). The electronic commutator in brushless pm motor is built into the motor, same as mechanical commutator in dc motors. The electronic commutator is supplied with dc voltage. The windings' current is of variable character, but its frequency depends on the rotational speed of the motor. This speed is controlled and set by changing the electronic commutator supply voltage. If the current waveforms generated by electronic commutator in A, B, C phases windings are trapezoidal, then the motor is denoted as trapezoidally controlled. The mathematical model of this motor is given in Equations (11-14). If the current waveforms generated by electronic commutator in A, B, C phases windings are sinusoidal, then the motor is denoted as sinusoidally controlled. The mathematical model of the motor is given in Equations (15-20).
Źródło:
Maszyny Elektryczne: zeszyty problemowe; 2005, 71; 103-111
0239-3646
2084-5618
Pojawia się w:
Maszyny Elektryczne: zeszyty problemowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Napędy elektryczne wielobiegowe
Multi-speed electric drives
Autorzy:
Glinka, T.
Jakubiec, M.
Powiązania:
https://bibliotekanauki.pl/articles/1374875.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Napędów i Maszyn Elektrycznych Komel
Tematy:
napęd elektryczny
napęd wielobiegowy
silniki elektryczne
silniki wielobiegowe
energooszczędność
Opis:
Multi-speed electric drives are usually used in these cases, where work cycle of a given drive requires two or more different rotational speeds. Examples of such drives are pumps, fans, centrifuges, lifts etc. Another reason for using multi-speed drives is decreasing the energy consumption. Low energy consumption is ecological and economical criterion of the drive. If energy is not spent unnecessarily, then it need not be generated. About 98 of electrical energy in Poland is produced by burning coal and therefore, if less coal is burnt, the emission of carbon dioxide, sulphur dioxide and nitrogen oxides goes down. Lower speed of the drive causes diminished wear of driven mechanical devices and decreases generated noise; a good instance of such drive is belt conveyor. Energy-saving drive is the type of drive drawing minimum energy from the network necessary from the viewpoint of the engineering process - Fig.1. Energy required for engineering process during time t (e.g. day, month, year) is equal to. The driven mechanical system imposes load torque T(ob) and angular speed omega(m) on the motor. Equation (1) shows that the minimum energy consumption is achieved, when the drive operates at minimum allowable angular speed (omega (m min)). Usually the load torque is also minimum under such conditions. This type of working cycle algorithm in modern electric drives can be obtained by using cage induction motor supplied from power electronics converter (inverter). If we assume that, for a chosen drive, e.g. belt conveyor, the energy consumption per time unit (e.g. t = 24 h): - is equal to 100 per cent, when angular speed is kept constant (omega(m) = const) - drops down to 50 per cent in accordance with omega(m min) criterion (for a belt conveyor this speed corresponds to 100 per cent loading of the belt), then when two-speed drive is used, the energy consumption will go down to c. 70 percent, and with three-speed drive to c. 60 per cent. Two-or three-speed drive is cheaper and as easy to design as one-speed drive. Multi-speed drives can utilize the following motors: - multi-speed cage induction motors, - system of two induction slip-ring motors, supplied either individually or as a cascade system, - synchronous motors of special design, stator winding with switchable number of poles, - induction or synchronous motors supplied either from the network or from power-generator set (lower frequency, also lower voltage).
Źródło:
Maszyny Elektryczne: zeszyty problemowe; 2005, 71; 135-141
0239-3646
2084-5618
Pojawia się w:
Maszyny Elektryczne: zeszyty problemowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozwiązania silników tarczowych
Designs of disc motors
Autorzy:
Glinka, T.
Jakubiec, M.
Powiązania:
https://bibliotekanauki.pl/articles/2077265.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Napędów i Maszyn Elektrycznych Komel
Tematy:
silnik tarczowy
silniki elektryczne
model matematyczny
Opis:
Three types of disc motors are presented in the paper: ,,torus" type (Fig. 1), salient-pole type (Fig.2 and Fig.3) and motor without magnetic core (Fig.4). Disc-type motor is easily installed since it may be fitted directly into drive wheel (Fig.5). However, the drive wheel is usually heavy, and that is why disc motors are used in slow speed electric vehicles. This eliminates the need for couplings/gearbox and simplifies drive system. The dimension of drive wheel limits motor's outer diameter and axial length. Given the dimension, it is necessary to design a motor with highest possible torque. Comparison of three types of disc motors shows that salient-pole motor ensures highest torque. The paper is aimed at optimisation of salient-pole motor dimensions, i.e. the following issues must be resolved: - how many poles should stator disc comprise - how to divide the pole surface into winding and magnetic core (Fig.6) in order to obtain maximum electromagnetic torque, if magnetic induction and current density are given. The answer to these questions is shown in Fig.7 and Table 1. Fig.8 presents motor design with outer diameter equal to 180 mm, inner diameter equal to 60 mm and axial length equal to 90 mm. The motor's parameters are: 24V, 350W, 32N.m, 88,5 rpm. Fig.9 show the electric scheme of supply and control of two 2-band motors built into the wheel rims.
Źródło:
Maszyny Elektryczne: zeszyty problemowe; 2007, 77; 243-249
0239-3646
2084-5618
Pojawia się w:
Maszyny Elektryczne: zeszyty problemowe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies