Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "współczynnik dyfuzji" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Mathematical modeling of Actinidia arguta (kiwiberry) drying kinetics
Modelowanie kinetyki procesu suszenia owoców mini kiwi (Actinidia arguta)
Autorzy:
Bialik, M.
Gondek, E.
Wiktor, A.
Latocha, P.
Witrowa-Rajchert, D.
Powiązania:
https://bibliotekanauki.pl/articles/94073.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
mini kiwi
Actinidia arguta
drying
mathematical modeling
water diffusion coefficient
suszenie
modelowanie matematyczne
współczynnik dyfuzji wody
Opis:
Consumers and scientists exhibit a growing interest in bioactive ingredients of natural origin with strong pro-health effects. Such properties have been found in fruits of of Actinidia argute, commonly known as kiwiberry (mini kiwi or hardy kiwi). Appropriate methods and parameters of the drying process enable obtaining a product with preserved high pro-health properties. The obejctive of this paper was to study the influence of the selected drying methods on the drying kinetics of actinidia. Commonly known mathematical models were used to describe the process. The kinetics of convective, microwave-convective, infrared and vacuum drying was investigated. The process was performed until samples reached dimensionless moisture ratio (MR) of 0.02. The quickest method was vacuum drying reaching moisture ratio target after 286 min, and the slowest was convective drying characterized by 1352 min of drying. In general, Midilli et al.’s model was evaluated as the most adequate for description of the moisture transfer in the fruit samples.
W ostatnich latach wzrasta zainteresowanie naukowców i konsumentów bioaktywnymi składnikami żywności o silnym działaniu prozdrowotnym. Takie właściwości stwierdzono w owocach aktinidii (Actinidia arguta), powszechnie znanej, jako mini kiwi. Wykazano, że suszenie jest dobra metodą utrwalania owoców i pozwala uzyskać produkt o zachowanych wysokich właściwościach prozdrowotnych, pod warunkiem doboru odpowiedniej dla surowca metody i parametrów procesu. Celem pracy było zbadanie wpływu wybranych metod suszenia na kinetykę suszenia owoców aktinidii. Do opisu procesu wykorzystano powszechnie znane modele, dostępne w literaturze matematyczne. Badano kinetykę suszenia: konwekcyjnego, mikrofalowo-konwekcyjnego, podczerwonego i próżniowego. Proces prowadzono do momentu uzyskania próbek o bezwzględnym współ- czynniku wilgotności (MR) wynoszącym 0,02. Stwierdzono ze najszybszą metodą było suszenie próżniowe, które pozwoliło osiągnąć docelowy współczynnik MR po 286 minutach, a najwolniejszą było suszenie konwekcyjne, po 1352 min suszenia. Spośród analizowanych modeli matematycznych, najbardziej odpowiedni do opisu kinetyki suszenia mini kiwi był model Midilliego.
Źródło:
Agricultural Engineering; 2017, 21, 4; 5-13
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Właściwości fizyczne bezglutenowego pieczywa chrupkiego
Physical properties of gluten-free crisp bread
Autorzy:
Gondek, E.
Jakubczyk, E.
Wieczorek, B.
Powiązania:
https://bibliotekanauki.pl/articles/796175.pdf
Data publikacji:
2013
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
pieczywo chrupkie
pieczywo bezglutenowe
wlasciwosci fizyczne
wlasciwosci sorpcyjne
zawartosc wody
wspolczynnik dyfuzji wody
pieczywo kukurydziane
pieczywo ekstrudowane
maka ryzowa
maka gryczana
maka z szarlatu
crisp bread
gluten-free bread
physical property
sorption property
water content
water diffusivity coefficient
corn bread
extruded bread
rice flour
buckwheat flour
amaranth flour
Opis:
W pracy badano wpływ składu pieczywa bezglutenowego na jego wybrane właściwości fizyczne. Przedmiotem badań było pieczywo ekstrudowane wyprodukowane na bazie kaszki kukurydzianej bez dodatków oraz pieczywo kukurydziane z dodatkiem mąki ryżowej, gryczanej oraz mąki z nasion amarantusa. Wykazano, że skład ekstrudowanej mieszanki w niewielkim stopniu wpływał na zawartość i aktywność wody uzyskanego pieczywa, jak również na współczynnik ekspansji, który wynosił średnio 152%. Dodatek mąki gryczanej spowodował istotny, prawie dwukrotny, wzrost współczynnika adsorpcji wody. Wskaźnik rozpuszczalności skrobi w wodzie wahał się w przedziale 18,56–24,57% i był najniższy w pieczywie z dodatkiem amarantusa. Pieczywo wzbogacone o dodatek mąki z amarantusa cechowało się też najniższą gęstością pozorną (0,144 g·cm–3) i najwyższą porowatością (94%). Pomiary dynamiki adsorpcji pary wodnej wykazały, że pieczywo kukurydziano-gryczane chłonie wodę najintensywniej spośród badanych. Współczynnik dyfuzji wody pieczywa wyznaczony na podstawie równania Ficka wynosił 4,12–7,02·10–9 m2·s–1 a wilgotność równowagowa wyznaczona z tego równania 18,23–24,24 gH2O·(100 g s.s.)–1.
In this work, the effect of composition of gluten-free bread on its selected physical properties was investigated. The extruded bread of corn grits without additives, the corn crisp bread with addition of rice fl our, buckwheat fl our or amaranth fl our were evaluated. The composition of extrusion blend affected the water content and water activity to a small extent. The similar tendency was observed for expansion index (with its average value of 152%). Water solubility index of starch was in the range from 18.56 to 24.57%, the highest value of WSI was observed for amaranth-corn bread. The bread supplemented with amaranth fl our characterised the lowest apparent density (0.144 g·cm–3) and the highest porosity (94%). The measurements of the water vapour sorption dynamics showed that the moisture absorption ability of buckwheat – corn bread was more intense than observed for other breads. The moisture diffusion coeffi cient determined by solving Fick’s equation was within the range of 4.12–7.02·10–9 m2·s–1 and the equilibrium moisture content (calculated from the same equation) ranged from 18.23 to 24.24 g H2O·(100 g s.s.)–1.
Źródło:
Zeszyty Problemowe Postępów Nauk Rolniczych; 2013, 574
0084-5477
Pojawia się w:
Zeszyty Problemowe Postępów Nauk Rolniczych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies