Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bernaś, M." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
The visual detection and steering of medical autonomous vehicles
Autorzy:
Bernas, M.
Powiązania:
https://bibliotekanauki.pl/articles/334017.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
autonomous device
steering
optical code
Hough transform
first aid
medical parameters
urządzenie autonomiczne
układ sterowania
kod optyczny
transformacja Hougha
pierwsza pomoc
parametry medyczne
Opis:
The paper presents initial research on method, which improves precise indoor localization and steering of autonomous mobile devices that can be used for medical applications like: patient’s state monitoring, medicine distribution or environmental data collection before medical intervention (in case of biohazard or fire). The localization of object is based on optical codes, which are modified to be easily identified from distance in low light. Multiple codes modification was tested to find optimal ones. The visual recognition system is using Hough transform and Canny edge detection to read values from code. The novelty of the proposed method is reading values directly from image, without scaling and rotation. Moreover, the steering algorithm for identified device is proposed. It takes distance and decision uncertainty under consideration. The proposed method was verified against state-of-the-art optical codes in real-world indoor environment. Finally, the further research directions are discussed.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 133-140
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ANN as justified granular computing mechanism for medical data classification
Autorzy:
Bernas, M.
Powiązania:
https://bibliotekanauki.pl/articles/333728.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
artificial neural network
granular computing
data fusion
medical data analysis
sztuczne sieci neuronowe
obliczenia ziarniste
fuzja danych
analiza danych medycznych
Opis:
The medical data and its classification have to be treated in particular way. The data should not be modified or altered, because this could lead to false decisions. Most state-of-the-art classifiers are using random factors to produce higher overall accuracy of diagnosis, however the stability of classification can vary significantly. Medical support systems should be trustworthy and reliable, therefore this paper proposes fusion of multiple classifiers based on artificial Neural Network (ANN). The structure selection of ANN is performed using granular paradigm, where granulation level is defined by ANN complexity. The classification results are merged using voting procedure. Accuracy of the proposed solution was compared with state-of-the-art classifiers using real medical data coming from two medical datasets. Finally, some remarks and further research directions have been discussed.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 85-90
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Separation of groups of free radicals from noised EPR spectrum using genetic algorithm and gradient method
Autorzy:
Bernas, M.
Ramos, P.
Powiązania:
https://bibliotekanauki.pl/articles/951652.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
signal filtering
genetic algorithms
spectra analysis
free radicals
EPR spectroscopy
function approximation
filtrowanie sygnału
algorytmy genetyczne
analiza widma
wolne rodniki
spektroskopia EPR
aproksymacja funkcji
Opis:
Different groups of free radicals exist in biological material like animal tissues or plants parts. The processes like heating or cooling creates additional types of free radicals groups in this organic matter, due to changes in chemical bonds. The paper proposes a method to determine types and concentrations of different groups of free radicals in the matter processed in various temperatures. The method extracts the spectrum of free radicals using electron paramagnetic resonance with the microwave power of 2.2 mW. Then an automatic method to find a best possible fit using limited number of theoretical mathematical functions is proposed. The match is found using spectrum filtration, and a genetic algorithm implementation supported by a Gradient Method. The obtained results were compared against the samples prepared by an expert. Finally, some remarks were given and new possibilities for future research were proposed.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 117-123
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quantum road traffic model for ambulance travel time estimation
Autorzy:
Bernas, M.
Wisniewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/333463.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
ambulance travel time prediction
quantum processing
traffic modelling
przewidywany czas jazdy pogotowia
przetwarzanie informacji kwantowej
modelowanie ruchu drogowego
Opis:
Efficient management of ambulance utilisation is a vital issue for life saving. Knowledge of the amount of time needed for an ambulance to get to the hospital and when it will be available for a new task, can be estimated using modern Intelligent Transport Systems. Their main feature is an ability to simulate the state of traffic not only in long term, but also the real time events like accidents or high congestion, using microscopic models. The paper introduces usage of Quantum Computing paradigm to propose a quantum model of road traffic, which can track the state of traffic and estimate the travel time of vehicles. Model, if run on quantum computer can simulate the traffic in vast areas in real time. Proposed model was verified against the cellular automata model. Finally, application of quantum microscopic traffic models for ambulance vehicles was taken into consideration.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 257-264
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decentralized control of traffic signals with priority for ambulances
Autorzy:
Lewandowski, M.
Płaczek, B.
Bernas, M.
Powiązania:
https://bibliotekanauki.pl/articles/333724.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
vehicular sensor networks
traffic signal control
priority vehicles
sieci czujników ruchu
sterowanie ruchem drogowym
pojazdy uprzywilejowane
Opis:
In this paper delays and average travel times of vehicles are analyzed for various decentralized traffic control algorithms that can provide priority for ambulances. Decentralized control strategy is scalable and can be used in road networks where traffic lights are controlled autonomously for multiple intersections of different types. The experiments were performed in a realistic simulation model of complex road network, which is typical for European cities. It was shown that utilization of detailed traffic data from vehicular sensor network significantly improves the performance of signal control algorithms. After proper selection of algorithm parameters, the decentralized control strategy not only provides a quick transition of ambulances, but also has minimal effect on the delay of non-priority vehicles. Research for mesh road network organization has been performed in previous work [16].
Źródło:
Journal of Medical Informatics & Technologies; 2017, 26; 9-17
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies