Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "distinguishing number" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Trees with Distinguishing Index Equal Distinguishing Number Plus One
Autorzy:
Alikhani, Saeid
Klavžar, Sandi
Lehner, Florian
Soltani, Samaneh
Powiązania:
https://bibliotekanauki.pl/articles/31804165.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
automorphism group
distinguishing index
distinguishing number
tree
unicyclic graph
Opis:
The distinguishing number (index) D(G) (D′ (G)) of a graph G is the least integer d such that G has an vertex (edge) labeling with d labels that is preserved only by the trivial automorphism. It is known that for every graph G we have D′ (G) ≤ D(G) + 1. In this note we characterize finite trees for which this inequality is sharp. We also show that if G is a connected unicyclic graph, then D′ (G) = D(G).
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 875-884
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Distinguishing Number and Distinguishing Index of the Lexicographic Product of Two Graphs
Autorzy:
Alikhani, Saeid
Soltani, Samaneh
Powiązania:
https://bibliotekanauki.pl/articles/31342273.pdf
Data publikacji:
2018-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distinguishing index
distinguishing number
lexicographic
Opis:
The distinguishing number (index) D(G) (D′(G)) of a graph G is the least integer d such that G has a vertex labeling (edge labeling) with d labels that is preserved only by the trivial automorphism. The lexicographic product of two graphs G and H, G[H] can be obtained from G by substituting a copy Hu of H for every vertex u of G and then joining all vertices of Hu with all vertices of Hv if uv ∈ E(G). In this paper we obtain some sharp bounds for the distinguishing number and the distinguishing index of the lexicographic product of two graphs. As consequences, we prove that if G is a connected graph with Aut(G[G]) = Aut(G)[Aut(G)], then for every natural number k, D(G) ≤ D(Gk) ≤ D(G) + k − 1 and all lexicographic powers of G, Gk (k ≥ 2) can be distinguished by two edge labels, where Gk = G[G[. . . ]].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 3; 853-865
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies