- Tytuł:
-
Optimization algorithm for number and wells placement
Algorytm optymalizacji liczby i położenia odwiertów - Autorzy:
- Łętkowski, Piotr
- Powiązania:
- https://bibliotekanauki.pl/articles/1834980.pdf
- Data publikacji:
- 2019
- Wydawca:
- Instytut Nafty i Gazu - Państwowy Instytut Badawczy
- Tematy:
-
optimization
reservoir simulation
swarm intelligence
particle swarm optimization (PSO)
optimal number of wells
optimal well placement
optymalizacja
symulacje złożowe
inteligencja roju
optymalizacja rojem cząstek
optymalna liczba odwiertów
optymalne położenie odwiertów - Opis:
-
Determination of the optimal number and placement of production wells is crucial for the effective depletion of the hydrocarbon reservoir. Due to the strongly non-linearity of the problem and the occurrence of multiple local minimums in the response function the non-gradient optimization methods in combination with reservoir simulations are most commonly used for its solution. However, it should be noted that most of the research works dedicated to this issue describe the process of placement optimization but not the number of drilling wells assuming that it was arbitrary set. This is partly due to the fact that known and used optimization methods operate on a fixed number of optimization parameters, therefore the number of production wells can not change during the optimization process. The paper is dedicated to the attempt to build an algorithm that allows simultaneous optimization of the number and position of production wells with respect to the discounted profit in a given period of operation. The basic optimization method in the presented algorithm is the Particle Swarm Optimization (PSO) – one of the most effective non-gradient optimization methods that belongs to the group of methods applying the swarm’s intelligence. Taking into account the number of drilling wells in the optimization process means that the algorithm operates on a variable number of parameters. The objective algorithm starts optimization from an arbitrarily set number of producers, reducing it gradually. Efficiency tests conducted on the sample reservoir PUNQ-S3 indicated a satisfactory convergence of the proposed method. The computing program created implements the mechanisms of convergence enhancement by improving the boundary conditions for the optimization method. The minimum separation distance control between production wells was also introduced at the initial stage of optimization process. Although the algorithm is characterized by satisfactory convergence it would be advisable to improve it by using a hybrid method to increase its effectiveness in the local optimization phase and to introduce minimum well spacing during the entire optimization process.
Określenie optymalnej liczby i położenia odwiertów eksploatacyjnych jest kluczowe dla efektywnej eksploatacji złoża węglowodorowego. Ze względu na silnie nieliniowy charakter problemu oraz występowanie w funkcji odpowiedzi wielokrotnych minimów lokalnych do jego rozwiązania najczęściej wykorzystywane są bezgradientowe metody optymalizacyjne w połączeniu z symulacjami złożowymi. Należy jednak zauważyć, że większość prac poświęconych temu zagadnieniu opisuje proces optymalizacji położenia, a nie liczby odwiertów, przyjmując, że jest ona dana arbitralnie. Wynika to po części z faktu, że znane i stosowane metody optymalizacyjne operują na stałej liczbie parametrów optymalizacyjnych, w związku z czym liczba odwiertów wydobywczych nie może zmieniać się w trakcie procesu optymalizacji. Artykuł jest poświęcony próbie zbudowania algorytmu umożliwiającego równoczesną optymalizację liczby i położenia odwiertów wydobywczych ze względu na zdyskontowany zysk w zadanym okresie eksploatacji. Podstawową metodą optymalizacyjną w prezentowanym algorytmie jest optymalizacja rojem cząstek (ang. PSO) – jedna z najbardziej efektywnych metod optymalizacji bezgradientowej, należąca do grupy metod wykorzystujących inteligencję roju. Próby efektywności metody przeprowadzone na przykładzie złoża testowego PUNQ-S3 wskazały na zadowalającą zbieżność zaproponowanej metody, dla której na początkowym etapie zastosowano kontrolę minimalnej odległości pomiędzy odwiertami. Jakkolwiek algorytm charakteryzuje się zadowalającą zbieżnością, to jednak wskazane byłoby jego udoskonalenie poprzez wykorzystanie metody hybrydowej w celu zwiększenia jego efektywności w fazie optymalizacji lokalnej oraz wprowadzenie kontroli odległości minimalnej w trakcie całego procesu optymalizacji. - Źródło:
-
Nafta-Gaz; 2019, 75, 12; 744-750
0867-8871 - Pojawia się w:
- Nafta-Gaz
- Dostawca treści:
- Biblioteka Nauki