Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ivanova, Anna O." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
5-stars of low weight in normal plane maps with minimum degree 5
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Jensen, Tommy R.
Powiązania:
https://bibliotekanauki.pl/articles/30148303.pdf
Data publikacji:
2014-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
plane map
vertex degree
weight
light subgraph
Opis:
It is known that there are normal plane maps $M_5$ with minimum degree 5 such that the minimum degree-sum $w(S_5)$ of 5-stars at 5-vertices is arbitrarily large. In 1940, Lebesgue showed that if an $M_5$ has no 4-stars of cyclic type (5, 6, 6, 5) centered at 5-vertices, then $w(S_5) ≤ 68$. We improve this bound of 68 to 55 and give a construction of a (5, 6, 6, 5)-free $M_5$ with $w(S_5) = 48$.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 3; 539-546
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Extension of Kotzig’s Theorem
Autorzy:
Aksenov, Valerii A.
Borodin, Oleg V.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31340608.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
plane graph
normal plane map
structural property
weight
Opis:
In 1955, Kotzig proved that every 3-connected planar graph has an edge with the degree sum of its end vertices at most 13, which is tight. An edge uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. Borodin (1991) proved that every normal plane map contains an edge of one of the types (3, 10), (4, 7), or (5, 6), which is tight. Cole, Kowalik, and Škrekovski (2007) deduced from this result by Borodin that Kotzig’s bound of 13 is valid for all planar graphs with minimum degree δ at least 2 in which every d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2. We give a common extension of the three above results by proving for any integer t ≥ 1 that every plane graph with δ ≥ 2 and no d-vertex, d ≥ 11+t, having more than d − 11 neighbors of degree 2 has an edge of one of the following types: (2, 10+t), (3, 10), (4, 7), or (5, 6), where all parameters are tight.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 889-897
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Low 5-Stars at 5-Vertices in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree from 7 to 9
Autorzy:
Borodin, Oleg V.
Bykov, Mikhail A.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31348144.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar map
planar graph
3-polytope
structural properties
5-star
weight
height
Opis:
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class $P_5$ of 3-polytopes with minimum degree 5. Given a 3-polytope $P$, by $h_5(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in $P$. Recently, Borodin, Ivanova and Jensen showed that if a polytope $P$ in $P_5$ is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a (5, 5, 6, 6, ∞)-vertex, then $h_5(P)$ can be arbitrarily large. Therefore, we consider the subclass \(P_5^\ast\) of 3-polytopes in $P_5$ that avoid (5, 5, 6, 6, ∞)-vertices. For each $P^\ast$ in $P_5^\ast$ without vertices of degree from 7 to 9, it follows from Lebesgue’s Theorem that $h_5(P^\ast) ≤ 17$. Recently, this bound was lowered by Borodin, Ivanova, and Kazak to the sharp bound $h_5(P^\ast) ≤ 15$ assuming the absence of vertices of degree from 7 to 11 in $P^\ast$. In this note, we extend the bound $h_5(P^\ast) ≤ 15$ to all $P^\ast$s without vertices of degree from 7 to 9.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1025-1033
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Vasil’eva, Ekaterina I.
Powiązania:
https://bibliotekanauki.pl/articles/31348169.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar map
planar graph
3-polytope
structural properties
5-star
weight
height
Opis:
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P5 of 3-polytopes with minimum degree 5. Given a 3-polytope P, by w(P) denote the minimum of the degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P. In 1996, Jendrol’ and Madaras showed that if a polytope P in P5 is allowed to have a 5-vertex adjacent to four 5-vertices, then w(P) can be arbitrarily large. For each P in P5 without vertices of degree 6 and 5-vertices adjacent to four 5-vertices, it follows from Lebesgue’s Theorem that w(P) ≤ 68. Recently, this bound was lowered to w(P) ≤ 55 by Borodin, Ivanova, and Jensen and then to w(P) ≤ 51 by Borodin and Ivanova. In this note, we prove that every such polytope P satisfies w(P) ≤ 44, which bound is sharp.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 985-994
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies