Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algorytmy uczenia sieci" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Wielokryterialny dobór parametrów operatora mutacji w algorytmie ewolucyjnym uczenia sieci neuronowej
Multi benchmark choice of mutation parameters in evolutionary algorithm of neural network learning
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/377966.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
algorytmy genetyczne
algorytmy ewolucyjne
sztuczne sieci neuronowe
algorytmy uczenia sieci
algorytmy selekcji, krzyżowania, mutacji
Opis:
Implementacja Algorytmów Ewolucyjnych (AE) do zadań uczenia Sztucznych Sieci Neuronowych (SSN) nie jest zadaniem łatwym. Zastosowanie algorytmów ewolucyjnych wyeliminowało ograniczenia algorytmów gradientowych lecz niestety napotykamy na szereg nowych problemów. W artykule analizuje się dwuwarstwową sieć neuronową , w której, w charakterze genotypu przyjmuje się dwa chromosomy połączone szeregowo. Tworzy się całą populację sieci neuronowych o indywidualnych własnościach chromosomów oblicza się wartości funkcji celu oraz realizuje się proces selekcji. W proponowanym rozwiązaniu eliminuje się algorytm krzyżowania i stosuje się tylko mutację. Operator mutacji, jego parametry mogą być identyczne dla dwóch chromosomów, różne i nieskorelowane lub różne i skorelowane. W artykule analizuje się różne charakterystyki algorytmu mutacji, zalety i wady.
The optimization of the learning algorithm in neural networks is not a trivial task. Considering the non–linear characteristics of the activation functions , the entire task is multidimensional and non–linear with a multimodal target function. Implementing evolutionary computing in the multimodal optimization tasks gives the developer new and effective tools for seeking the global minimum. A developer has to find optimal and simple transformation between the realization of a phenotype and a genotype. In the article, a two–layer neural network is analyzed. Two serially connected chromosomes represent the genotype. In the first step the population is created. In the main algorithm loop, a parent selection mechanism is used together with the fitness function. To evaluate the quality of evolutionary computing process different measured characteristics are used. The final results are depicted using charts and tables.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 91; 175-186
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Teoria i metody algorytmu ewolucyjnego w uczeniu jednowarstwowej sieci neuronowej
Implementation of the Evolutionary Algorithm Theory and Methods in the Learning Process of One-Layer ANN
Autorzy:
Płaczek, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/509173.pdf
Data publikacji:
2016
Wydawca:
Akademia Finansów i Biznesu Vistula
Tematy:
algorytmy genetyczne
algorytmy ewolucyjne
sztuczne sieci neuronowe
algorytmy uczenia sieci
algorytmy selekcji
algorytmy krzyżowania
algorytmy mutacji
genetic algorithm
evolutionary algorithm
artificial neural network
learning algorithm
selection algorithm
crossover algorithm
mutation algorithm
Opis:
Rozwój teorii sztucznych sieci neuronowych, a także pojawienie się nowych, efektywnych narzędzi programistycznych (systemy wieloprocesorowe, programowanie wielowątkowe) umożliwia zastosowanie algorytmów genetycznych oraz ewolucyjnych do uczenia sztucznych sieci neuronowych (SSN). W literaturze dotyczącej zasad działania SSN podkreśla się ich atrakcyjne własności, takie jak: aproksymacja dowolnych nieliniowych odwzorowań, równolegle i rozproszone przetwarzanie, adaptacja i uczenie. Szczególnie równoległe i rozproszone przetwarzanie koresponduje ze strukturą algorytmu genetycznego i ewolucyjnego. Klasyczne algorytmy genetyczne operują na ciągach binarnych o stałej długości. Natomiast algorytmy ewolucyjne można interpretować jako uogólnienie algorytmów genetycznych. W algorytmach tych stosuje się zasady ewolucji i dziedziczenia oraz wykorzystuje się właściwą strukturę danych do reprezentacji chromosomów (liczby rzeczywiste, macierze, grafy). Definiuje się również inne operatory krzyżowania i mutacji. Tak więc struktura algorytmu ewolucyjnego jest prawie taka sama jak genetycznego. Różnice ukryte są na niższych poziomach przetwarzania – w strukturach danych. W artykule przedstawiono próbę implementacji algorytmu ewolucyjnego do uczenia jednowarstwowej sieci neuronowej. Sieć opisuje się w postaci macierzy połączeń między wektorami – wejściowym X oraz wyjściowym Y. Funkcja uczenia SSN zdefiniowana jest jako nieliniowa funkcja wag sieci oraz nieliniowej funkcji aktywacji minimalizującej błąd średniokwadratowy między wektorem wyjściowym Y a wektorem uczącym Z, dla całej paczki uczącej. Pojawienie się nieliniowości utrudnia zastosowanie algorytmu uczenia opartego na wstecznej propagacji błędu. Funkcja celu, oprócz minimum globalnego, może zawierać wiele minimów lokalnych, w których algorytm oparty na badaniu gradientu funkcji celu może się zatrzymać. Oczywiście stosuje się różne techniki i metody umożliwiające wyjście algorytmu z tego typu pułapek. Tym niemniej dla sprawdzenia poprawności otrzymanych wyników uruchamia się proces uczenia SSN dla różnych danych początkowych. W zaproponowanym algorytmie ewolucyjnym tworzy się zbiór osobników. Każdy z osobników przedstawia możliwe rozwiązanie zadania minimalizacji funkcji celu i jest reprezentowany przez macierzową strukturę danych. Każde rozwiązanie cząstkowe ocenia się na podstawie dopasowania funkcji celu, a następnie tworzy się nową populację (potomków) przez selekcję osobników o najlepszych dopasowaniach oraz dwa algorytmy krzyżowania i mutacji. W artykule omówiono zaproponowaną strukturę osobników, przyjęte algorytmy selekcji z ich wadami i zaletami oraz różne algorytmu krzyżowania i mutacji. Na wstępie zdefiniowano takie podstawowe pojęcia, jak gen, chromosom oraz najogólniejszą strukturę algorytmu ewolucyjnego. Artykuł ma charakter koncepcyjny.
The article proposes implementation of a modified version of genetic algorithms in neural networks, what in literature is known as “evolutionary algorithm” or “evolutionary programming”. An evolutionary algorithm is a probabilistic algorithm that works in a set of weight variability of neurons and seeks the optimal value solution within a population of individuals, avoiding the local maximum. For chromosomes, the real value variables and matrix structure are proposed. In the article, this decision is widely elaborated and discussed. In the original versions of genetic algorithms, all variables’ values are transformed into binary versions. The chromosomes bit sequences could include thousands of positions. It does not simplify the crossover and mutation operations. Processes could be very time-consuming and the algorithm convergence could also be slow. For a single-layer neural network matrix data structure is used. A particular emphasis is put on mutation and crossover algorithms. What is also important in both genetic and evolutionary algorithms is the selection process. The primary population, known as the parent population, is employed to build a new set of individuals using the selection process. These individuals are known as the children population. The selection algorithm should converge on the two very important issues: population diversity and selective pressure. Selective pressure can manifest in the overrepresentation of the best individuals in the new population. The area, in which the optimal solution is sought, is reduced too fast. Premature convergence is not desirable due to the high probability of achieving the local maximum. Reducing the selective pressure may result in increasing the time it takes to search for the solution.
Źródło:
Zeszyty Naukowe Uczelni Vistula; 2016, 49(4) Informatyka; 23-39
2353-2688
Pojawia się w:
Zeszyty Naukowe Uczelni Vistula
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja zastosowania sztucznych sieci neuronowych do lokalizacji elementów powodujących pogorszenie jakości energii elektrycznej w sieciach średniego napięcia
A concept of the application of artificial neural networks in the location of elements that distort the quality of energy in medium voltage distribution networks
Autorzy:
Kolasa, M.
Długosz, R
Powiązania:
https://bibliotekanauki.pl/articles/377466.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
jakość energii elektrycznej
sztuczne sieci neuronowe
nowe algorytmy uczenia
Opis:
W artykule przedstawiono koncepcję wykorzystania sztucznych sieci neuronowych do rozwiązywania problemu lokalizacji źródeł zakłóceń powodujących pogorszenie jakości energii elektrycznej. W dziedzinie tej coraz częściej sięga się po rozwiązania oparte na sztucznej inteligencji, choć zazwyczaj stosowane algorytmy uczenia sieci neuronowych implementowane są jako programy komputerowe. Biorąc pod uwagę ogromną ilość danych, które muszą zostać przetworzone, rozwiązania takie nie są optymalne. Rozwiązaniem tego problemu może być zastosowanie równoległego przetwarzania danych, możliwego do uzyskania w sieciach neuronowych realizowanych jako specjalizowane układy scalone. Jest to celem naszych badań. W artykule przedstawiono jeden z etapów realizacji tego zadania - model sieci elektroenergetycznej, którego celem jest dostarczenie danych uczących dla projektowanej na poziomie tranzystorów sieci neuronowej. W realizowanej sieci neuronowej wykorzystano nowatorski algorytm oparty na filtracji błędu kwantyzacji, który pozwala znacząco skrócić fazę uczenia, przez co sieć jest w stanie szybko dostosować się do nowych danych.
The paper presents a concept of using artificial neural networks to solve the prob- lem of the location of sources that cause deterioration in the quality of the electrical power. In this field the solutions that base on artificial intelligence are gaining popularity in recent time. However, the learning algorithms that are used in this case are usually implemented as computer programs. Given the large amount of data that must be processed, such solutions are not optimal. The solution to this problem may be the usage of parallel data processing obtainable in neural networks implemented, for example, as specialized integrated circuits. This is the purpose of our research. This paper presents one of the important steps in this task - a model of the electrical power system, the aim of which is to provide training data for the neural network. In the realized neural network a novel algorithm has been used that is based on filtering of the quantization error. By using this algorithm the learning phase can be substantially shortened, so that the network is able to quickly adapt to new data.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 79; 87-95
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie neuronalne rozwoju systemu elektroenergetycznego. Część 1. Obszary modelowania
Neuronal modeling of development power system. Part 1. The areas of modeling
Autorzy:
Tchórzewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/377456.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sztuczne sieci neuronowe
rozwój systemów elektroenergetycznych
projektowanie rozwoju
algorytmy uczenia
inżynieria rozwoju
Opis:
W pracy zamieszczono wybrane wyniki badań dotyczące modelowania neuralnego rozwoju systemu elektroenergetycznego. Zwrócono uwagę, że w modelowaniu neuronalnym wykorzystującym sztuczne sieci neuronowe projektuje się, a nie programuje rozwój systemu. Pokazano, że wśród różnych rodzajów architektury sztucznych sieci neuronowych oraz różnych reguł uczenia brak jest takich, które wprost odpowiadałyby naturze rozwoju SEE. Zwrócono uwagę na właściwości sieci perceptronowych, ontogenicznych oraz samorozwijających się, które możliwe są do wykorzystania przy projektowaniu i uczeniu modelu rozwoju SEE.
The paper presents selected results of research on the modeling of neuronal development of the power system. It was noted that in neuronal modeling using artificial neural networks are designed, not programming system development. It is shown that among the various types of architecture of artificial neural networks and various learning rules, there is no such that directly correspond to the nature of the development of SEE. Attention was drawn to the network properties perceptron network, ontogeny network and self-evaluating network that are possible to be used in the design and development model SEE learning.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2015, 82; 31-37
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies