- Tytuł:
- A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation
- Autorzy:
-
Kouche, M.
Ainseba, B. - Powiązania:
- https://bibliotekanauki.pl/articles/907704.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
zakażenie HIV
stabilność
hodowla tkanek
HIV
periodic oscillations
persistence
stability
tissue culture - Opis:
- In this paper we derive a model describing the dynamics of HIV-1 infection in tissue culture where the infection spreads directly from infected cells to healthy cells trough cell-to-cell contact. We assume that the infection rate between healthy and infected cells is a saturating function of cell concentration. Our analysis shows that if the basic reproduction number does not exceed unity then infected cells are cleared and the disease dies out. Otherwise, the infection is persistent with the existence of an infected equilibrium. Numerical simulations indicate that, depending on the fraction of cells surviving the incubation period, the solutions approach either an infected steady state or a periodic orbit.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2010, 20, 3; 601-612
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki