Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "information process" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Numerical Modelling of Fluid Flow and Thermal Phenomena in the Tundish of CSC Machine
Autorzy:
Sowa, L.
Powiązania:
https://bibliotekanauki.pl/articles/380813.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
foundry industry
information technology
continuous casting
molten metal
krzepnięcie
przemysł odlewniczy
odlewanie ciągłe
metal płynny
Opis:
The mathematical and numerical simulation model of the liquid steel flow in a tundish is presented in this paper. The problem was treated as a complex and solved by the finite element method. The single-strand slab tundish is used to continuous casting slabs. The internal work space of the tundish was modified by the following flow control devices. The first device was a striker pad situated in the pouring tundish zone. The second device was a baffle with three holes and the third device was a baffle without hole. The main purpose of using these devices was to cause a quiet liquid mixing as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulation. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influence of the tundish modification on velocity fields in the liquid phase of steel was estimated, because these have an essential influence on high quality of a continuous steel cast slab.
Źródło:
Archives of Foundry Engineering; 2014, 14, 1; 103-106
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated Analytical and Measurement System for the Evaluation of the Properties of Cast Metals and Alloys
Autorzy:
Biernat, S.
Bydałek, A. W.
Powiązania:
https://bibliotekanauki.pl/articles/380877.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry industry
application of information technology
solidification process
brass
hardness
przemysł odlewniczy
zastosowanie technologii informatycznych
krzepnięcie
mosiądz
twardość
Opis:
The article presents an integrated analytical and measurement system for evaluation of the properties of cast metals and alloys. The presented platform is an extension of the SLAG - PROP application with new modules, which allow to use information on metallurgical processes in an even more effective way, as well as to evaluate the finished product. In addition, the construction of a measuring station for the analysis of thermal processes taking place in a metal bath allows for precise observation of phenomena together with their appropriate interpretation. The article presents not only the cooling curves of certain copper alloys. The analysis also covered mechanical properties related to hardness, finished products depending on the mold in which the products were cast. In the literature one can find information about the mechanical properties of products in the improved state, usually after plastic or thermal treatment, omitting their properties obtained as a result of a naturally made casting. The article also presents the method of placing information in the database using a convenient graphical tool.
Źródło:
Archives of Foundry Engineering; 2019, 1; 13-18
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Problem of the moving boundary in continuous casting solved by the analytic-numerical method
Autorzy:
Grzymkowski, R.
Pleszczyński, M.
Hetmaniok, E.
Powiązania:
https://bibliotekanauki.pl/articles/383233.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
solidification process
numerical techniques
moving boundary problem
technologia informacyjna
przemysł odlewniczy
krzepnięcie stopu
technika numeryczna
problem brzegowy
Opis:
Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Źródło:
Archives of Foundry Engineering; 2013, 13, 1; 33-38
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical analysis of influence of the mold material on the distribution of shrinkage cavities
Autorzy:
Dyja, R.
Powiązania:
https://bibliotekanauki.pl/articles/379945.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
casting defect
macroshrinkage
solidification process
finite element method
technologia informacyjna
przemysł odlewniczy
wada odlewu
krzepnięcie stopu
metoda elementów skończonych
Opis:
Production of castings, like any other field of technology is aimed at providing high-quality product, free from defects. One of the main causes of defects in castings is the phenomenon of shrinkage of the casting. This phenomenon causes the formation of shrinkage cavities and porosity in the casting. The major preventive measure is supplementing a shortage of liquid metal. For supplement to be effective, it is necessary to use risers in proper shapes. Usually, the risers are selected on the basis of determination the place of formation of hot-spots in the castings. Although in these places the shrinkage defects are most likely to occur, shape and size of these defects are also affected by other factors. The article describes the original program setting out the shape and location of possible cavities in the casting. In the program is also taken into account the effect of temperature on the change in volume of liquid metal and the resultant differences in the shape and size of formed shrinkage cavities. The aim of the article is to describe the influence that have material properties of the mold on the simulation results.
Źródło:
Archives of Foundry Engineering; 2013, 13, 1; 15-18
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental Verification of the Cast Iron Solidification Model
Autorzy:
Mendakiewicz, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/2174627.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
foundry industry
application of information technology
solidification process
numerical techniques
thermal analysis
derivative analysis
przemysł odlewniczy
zastosowanie technologii informatycznych
krzepnięcie
techniki numeryczne
analiza termiczna
Opis:
The article concerns the experimental verification of the numerical model simulating the solidification and cooling processes proceeding in the domain of cast iron casting. The approximate course of the function describing the evolution of latent heat and the value of substitute specific heat resulting from its course were obtained using the thermal and derivative analysis (TDA) method The TDA was also used to measure the cooling curves at the distinguished points of the casting. The results obtained in this way were compared with the calculated cooling curves at the same points. At the stage of numerical computations, the explicit scheme of the finite difference method was applied. The agreement between the measured and calculated cooling curves is fully satisfactory.
Źródło:
Archives of Foundry Engineering; 2022, 22, 3; 91--94
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of Casting Technologies for Al-Si-Cu Plate Casting
Autorzy:
Cupido, L. H.
Żak, P. L.
Powiązania:
https://bibliotekanauki.pl/articles/379873.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
information technology
foundry industry
aluminium alloy
oxide film
casting simulation
krzepnięcie stopu
technologia informatyczna
przemysł odlewniczy
stop aluminium
warstwa tlenkowa
symulacja odlewania
Opis:
During the casting of aluminium alloys, the susceptibility to form oxide films is high, due to the turbulent flow of the melt and constant exposure of new surface area. This have impact on the properties of the material and the service life of the casting components. Also, hydrogen solubility in the solid state are very low, which ends up being rejected and causing porosity. After pouring, when solidification occurs, another phenomenon arise called shrinkage. This require excess molten metal to be fed during this phase change to eliminate or reduce the effect of volumetric changes. Filling and feeding during aluminium casting is therefore of paramount importance, and careful steps needs to be undertaken to reduce possible defects in the castings. The objective is to apply studied literature guides and rules and simulate the casting process of aluminium alloys, and understand the how certain defects are occurring during this process. This is a preliminary study towards the understanding of the “macro evolution” of Al-Si-Cu alloy during solidification, which will be the bases for the study of microsegregation of the specified alloy.
Źródło:
Archives of Foundry Engineering; 2013, 13, 3 spec.; 11-14
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytic-numerical method of determining the freezing front location
Autorzy:
Grzymkowski, R.
Hetmaniok, E.
Pleszczyński, M.
Powiązania:
https://bibliotekanauki.pl/articles/381964.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
information technology
foundry industry
one-phase Stefan problem
moving boundary problem
proces krzepnięcia
technologia informacyjna
przemysł odlewniczy
jednofazowy problem Stefana
problem brzegowy
Opis:
Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic boundary problems with the moving boundary. Solution of such defined problem requires, most often, to use sophisticated numerical techniques and far advanced mathematical tools. Excellent illustration of the complexity of considered problems, as well as of the variety of approaches used for finding their solutions, gives the papers [1-4]. In the current paper, the authors present the, especially attractive from the engineer point of view, analytic-numerical method for finding the approximate solution of selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of the sought function describing the temperature field into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of the function defining the location of freezing front with the broken line, parameters of which are numerically determined.
Źródło:
Archives of Foundry Engineering; 2011, 11, 3 spec.; 75-80
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Definition of alloy substitute thermal capacity using the simple macrosegregation models
Autorzy:
Mochnacki, B.
Powiązania:
https://bibliotekanauki.pl/articles/380456.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
technologia informatyczna
przemysł odlewniczy
proces krzepnięcia
zastępcza pojemność cieplna
metody numeryczne
information technology
foundry industry
solidification process
one domain method
substitute thermal capacity
numerical methods
Opis:
Mathematical description of alloys solidification in a macro scale can be formulated using the one domain method (fixed domain approach). The energy equation corresponding to this model contains the parameter called a substitute thermal capacity (STC). The analytical form of STC results from the assumption concerning the course of the function fs = fs (T) describing the changes of solid state volumetric fraction and the temperature at the point considered. Between border temperatures Ts , Tl the function fs changes from 1 to 0. In this paper the volumetric fraction fs (more precisely fl = 1- fs) is found using the simple models of macrosegregation (the lever arm rule, the Scheil model). In this way one obtains the formulas determining the course of STC resulting from the certain physical considerations and this approach seems to be closer to the real course of thermal processes proceeding in domain of solidifying alloy.
Źródło:
Archives of Foundry Engineering; 2012, 12, 4; 113-116
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Mesh Quality on the Numerical Solution of the Solidification of Pure Metal
Autorzy:
Skrzypczak, T.
Węgrzyn-Skrzypczak, E.
Powiązania:
https://bibliotekanauki.pl/articles/381672.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
information technology
foundry industry
pure metal
Stefan problem
finite element method
krzepnięcie stopu
technologia informatyczna
przemysł odlewniczy
metal czysty
zagadnienie Stefana
metoda elementów skończonych
Opis:
The paper presents a method of mathematical and numerical modelling of directional solidification process of pure metal in the two-dimensional region. In this case, the thermal conditions associated with the process favours the occurrence of sharp solidification front. The mathematical description of the process is based on the Stefan formulation with appropriate continuity conditions on the solid-liquid interface. The numerical model is based on the finite element method (FEM). The calculations were made on a fixed mesh with diffused solidification front to avoid the difficulties associated with the discontinuity. Temporary position of the interface was calculated with the use of the level set method (LSM). Effect of the quality of the spatial discretization on the accuracy of numerical solution was investigated. Obtained results of the temporary front position were compared with the analytical solution. The correlation between the quality of the spatial discretization and the accuracy of the results was observed. Methods used in the work had significant impact on the computation time and helped avoid the explicit consideration of discontinuity of heat flux on the front.
Źródło:
Archives of Foundry Engineering; 2013, 13, 2 spec.; 89-92
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of the Heat Transfer Coefficient in the Inverse Stefan Problem by Using the ABC Algorithm
Autorzy:
Hetmaniok, E.
Słota, D.
Zielonka, A.
Powiązania:
https://bibliotekanauki.pl/articles/382882.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
foundry industry
application of information technology
Stefan problem
swarm intelligence
ABC algorithm
proces krzepnięcia
przemysł odlewniczy
zastosowanie technologii informatycznych
Problem Stefana
inteligencja roju
algorytm ABC
Opis:
A procedure based on the Artificial Bee Colony algorithm for solving the two-phase axisymmetric one-dimensional inverse Stefan problem with the third kind boundary condition is presented in this paper. Solving of the considered problem consists in reconstruction of the function describing the heat transfer coefficient appearing in boundary condition of the third kind in such a way that the reconstructed values of temperature would be as closed as possible to the measurements of temperature given in selected points of the solid. A crucial part of the solution method consists in minimizing some functional which will be executed with the aid of one of the swarm intelligence algorithms - the ABC algorithm.
Źródło:
Archives of Foundry Engineering; 2012, 12, 2s; 27-32
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Rank Controlled Differential Quadrature Method for Solving an Infinite Steel Plate Cooling Problem
Autorzy:
Żak, P. L.
Suchy, J. S.
Lelito, J.
Gracz, B.
Powiązania:
https://bibliotekanauki.pl/articles/381994.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
solidification process
exact solution
rank controlled differential quadrature
numerical modelling
technologia informatyczna
przemysł odlewniczy
proces krzepnięcia
dokładne rozwiązanie
kwadratura różniczkowa sterowanego rzędu
modelowanie numeryczne
Opis:
Rank Controlled Differential Quadrature method is a numerical method that allows to approximate the partial derivatives that appears in partial differential equations. Those equations with proper geometrical, physical, initial and boundary conditions make mathematical models of physical process. The heat transfer process is governed by Fourier–Kirchhoff equation, which is parabolic Partial Differential Equation. In this paper authors present the steel plate cooling problem. At the beginning of the process plate is heated up to 450 °C and is cooled to ambient temperature. The cooling of the plate is basic heat transfer problem. If the plates dimensions has proper proportions such problem may be described as one dimensional and solved exactly. The mathematical model and exact solution is given in the work. Authors apply the Rank Controlled Differential Quadrature to approximate derivatives in Fourier–Kirchhoff equation and in boundary conditions. After changing derivatives into quadrature formulation set of algebraic equations is obtained. Substituting thermo-physical parameters numerical model is obtained. The computer program was prepared to solve the problem numerically. Results of simulation are confronted with the exact ones. Error value at each time step as well as error value increase rate for examined numerical method is analyzed.
Źródło:
Archives of Foundry Engineering; 2013, 13, 3 spec.; 201-206
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation of phase-change boundary position in continuous casting
Autorzy:
Ivanova, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/380559.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
information technology
foundry industry
mathematical modeling
temperature distribution
Stefan condition
phase change boundary
continuous casting
krzepnięcie stopu
technologia informacyjna
przemysł odlewniczy
modelowanie matematyczne
rozkład temperatury
warunek Stefana
granica międzyfazowa
odlewanie ciągłe
Opis:
The problem of determination of the phase-change boundary position at the mathematical modeling of continuous ingot temperature field is considered. The description of the heat transfer process takes into account the dependence of the thermal physical characteristics on the temperature, so that the mathematical model is based on the nonlinear partial differential equations. The boundary position between liquid and solid phase is given by the temperatures equality condition and the Stefan condition for the two-dimensional case. The new method of calculation of the phase-change boundary position is proposed. This method based on the finite-differences with using explicit schemes and on the iteration method of solving of non-linear system equations. The proposed method of calculation is many times faster than the real time. So that it amenable to be used for model predictive control of continuous semifinished product solidification.
Źródło:
Archives of Foundry Engineering; 2013, 13, 4; 57-62
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies