Rank Controlled Differential Quadrature method is a numerical method that allows to approximate the partial derivatives that appears in partial differential equations. Those equations with proper geometrical, physical, initial and boundary conditions make mathematical models of physical process. The heat transfer process is governed by Fourier–Kirchhoff equation, which is parabolic Partial Differential Equation. In this paper authors present the steel plate cooling problem. At the beginning of the process plate is heated up to 450 °C and is cooled to ambient temperature. The cooling of the plate is basic heat transfer problem. If the plates dimensions has proper proportions such problem may be described as one dimensional and solved exactly. The mathematical model and exact solution is given in the work. Authors apply the Rank Controlled Differential Quadrature to approximate derivatives in Fourier–Kirchhoff equation and in boundary conditions. After changing derivatives into quadrature formulation set of algebraic equations is obtained. Substituting thermo-physical parameters numerical model is obtained. The computer program was prepared to solve the problem numerically. Results of simulation are confronted with the exact ones. Error value at each time step as well as error value increase rate for examined numerical method is analyzed.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00