Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "software review" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction
Autorzy:
Khanna, Megha
Powiązania:
https://bibliotekanauki.pl/articles/2123249.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ensemble learning
software change prediction
software defect prediction
software quality
systematic review
Opis:
Background: The use of ensemble techniques have steadily gained popularity in several software quality assurance activities. These aggregated classifiers have proven to be superior than their constituent base models. Though ensemble techniques have been widely used in key areas such as Software Defect Prediction (SDP) and Software Change Prediction (SCP), the current state-of-the-art concerning the use of these techniques needs scrutinization. Aim: The study aims to assess, evaluate and uncover possible research gaps with respect to the use of ensemble techniques in SDP and SCP. Method: This study conducts an extensive literature review of 77 primary studies on the basis of the category, application, rules of formulation, performance, and possible threats of the proposed/utilized ensemble techniques. Results: Ensemble techniques were primarily categorized on the basis of similarity, aggregation, relationship, diversity, and dependency of their base models. They were also found effective in several applications such as their use as a learning algorithm for developing SDP/SCP models and for addressing the class imbalance issue. Conclusion: The results of the review ascertain the need of more studies to propose, assess, validate, and compare various categories of ensemble techniques for diverse applications in SDP/SCP such as transfer learning and online learning.
Źródło:
e-Informatica Software Engineering Journal; 2022, 16, 1; art. no. 220105
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Software Change Prediction: A Systematic Review and Future Guidelines
Autorzy:
Malhotra, Ruchika
Khanna, Megha
Powiązania:
https://bibliotekanauki.pl/articles/384059.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
change-proneness
machine learning
software quality
systematic review
Opis:
Background: The importance of Software Change Prediction (SCP) has been emphasized by several studies. Numerous prediction models in literature claim to effectively predict change-prone classes in software products. These models help software managers in optimizing resource usage and in developing good quality, easily maintainable products. Aim: There is an urgent need to compare and assess these numerous SCP models in order to evaluate their effectiveness. Moreover, one also needs to assess the advancements and pitfalls in the domain of SCP to guide researchers and practitioners. Method: In order to fulfill the above stated aims, we conduct an extensive literature review of 38 primary SCP studies from January 2000 to June 2019. Results: The review analyzes the different set of predictors, experimental settings, data analysis techniques, statistical tests and the threats involved in the studies, which develop SCP models. Conclusion: Besides, the review also provides future guidelines to researchers in the SCP domain, some of which include exploring methods for dealing with imbalanced training data, evaluation of search-based algorithms and ensemble of algorithms for SCP amongst others.
Źródło:
e-Informatica Software Engineering Journal; 2019, 13, 1; 227-259
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies