Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uczenie głębokie." wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Uczenie wielowarstwowych szerokich sieci neuronowych z funkcjami aktywacji typu ReLu w zadaniach klasyfikacji
Teaching multilayer wide neural networks with ReLU activation function in the classification tasks
Autorzy:
Płaczek, S.
Płaczek, A.
Powiązania:
https://bibliotekanauki.pl/articles/377248.pdf
Data publikacji:
2018
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sieci neuronowe
algorytmy uczenia
uczenie głębokie
sieci szerokie
Opis:
W artykule przedstawiono obecnie nowy kierunek rozwoju Sztucznych Sieci Neuronowych w zadaniach aproksymacji i klasyfikacji. W praktyce stosowano sieci o jednej, maksimum dwóch warstwach ukrytych oraz funkcjach aktywacji typu sigmoid lub tanh. Funkcje te charakteryzują się małą zmiennością wartości dla większych wartości zmiennej wejściowej (występują obszary nasycenia) . Konsekwencją tego jest bardzo mała wartość pochodnej funkcji celu, która jest obliczana w algorytmie uczenia typu wstecznej propagacji błędu. W warstwach oddalonych od wyjścia sieci, algorytm operuje wartościami małymi, bliskimi zero, co powoduje, że algorytm jest bardzo wolno zbieżny. W sieciach o wielu warstwach ukrytych (10-15, a nawet więcej), stosuje się odcinkowe funkcje aktywacji pomimo ich formalno – matematycznych niedoskonałości. Stosując metody numeryczne w obliczeniu pochodnej, można ten problem rozwiązać, a tym samych poprawnie obliczyć pochodną funkcji aktywacji. Powyższe pozwala na obliczenie gradientu funkcji celu dla warstw głębokich uzyskując jednocześnie zadawalającą szybkość zbieżności.
In the article, a new way of artificial neural network development in the classification task is introduced. In the past, neural networks with two or maximum three hidden layers were used. The sigmoid or tanh activation functions were implemented as well. These functions have very interesting properties that are very useful in the learning algorithms. Unfortunately, they have a saturation area for the small and big argument’s value. As a consequence, if the derivatives are calculated in every hidden layer, they values are very small, near zero. It has a very negative impact on the property of the learning algorithm. In this area, an algorithm is working very slowly. Two factors now have big impact on the neural network development: big databases and power microprocessors. Therefore, a deep neural network with many hidden layers could be used in practice tasks. To improve the gradient calculation a new activation function, ReLU, is used. In the article, the properties of these neural networks are studied. It is the first step to building more powerful networks that are known as Convolutional Neural Networks.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2018, 96; 47-58
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie głębokie w diagnostyce medycznej
Deep Learning in Medical Diagnosis
Autorzy:
Antczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/404011.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci neuronowe
diagnostyka medyczna
uczenie głębokie
neural networks
medical diagnosis
deep learning
Opis:
W pracy przeanalizowano perspektywy zastosowania metod uczenia głębokiego w diagnostyce medycznej. Jedną z kluczowych cech uczenia głębokiego jest zdolność do wyodrębniania złożonych wzorców o strukturze hierarchicznej. Wzorce takie występują również w diagnostyce, jako tak zwane diamenty diagnostyczne. Zastosowanie głębokich sieci neuronowych mogłoby poprawić jakość klasyfikatorów wykrywających choroby na podstawie objawów. Dodatkowo umożliwiłoby to sterowanie czułoscią i swoistością klasyfikatorów.
In this paper we analyze perspectives of applying deep learning methods in a field of medical diagnosis. One of key features of deep learning is ability to extract complex, hierarchical patterns. Such patterns are present also in a medical diagnosis, where they are known as diagnostic diamonds. Applying deep neural networks could increase performance of medical classifiers. Moreover, it would allow to adjust sensitivity and specificity of classifiers.
Źródło:
Symulacja w Badaniach i Rozwoju; 2016, 7, 3-4; 83-88
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnozowanie stanu retinopatii cukrzycowej przy pomocy głębokich sieci neuronowych
Classification of the stage of the disease by deep neural networks
Autorzy:
Jarzembiński, B.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/267831.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
retinopatia cukrzycowa
deep learning
neural networks
diabetic retinopathy
Opis:
W referacie opisano problem wykrywania oraz klasyfikacji stanu retinopatii cukrzycowej ze zdjęć dna oka przy pomocy głębokich sieci neuronowych. Retinopatia cukrzycowa jest chorobą oczu często występującą u osób z cukrzycą. Nieleczona prowadzi do uszkodzenia wzroku, a nawet ślepoty. W pracy badawczej opracowano system wykrywania retinopatii cukrzycowej na podstawie zdjęć dna oka. Opracowana sieć neuronowa przypisuje stan choroby w 5 stopniowej skali – od braku choroby do najbardziej zaawansowanego stanu choroby. Zaproponowano specjalny system kodowania klas w celu uchwycenia wielkości różnicy pomiędzy rzeczywistymi a predykowanymi stanami choroby. Uzyskano wysokie wyniki klasyfikacji na zbiorze testowym. W celu oceny skuteczności działania systemu wykorzystano miary statystyczne takie jak ważona Kappa i dokładność.
In the paper we described computer aided detection system of diabetic retinopathy based on fundus photos of retina. Diabetic retinopathy is an eye disease associated with diabetes. Non-treated diabetic retinopathy leads to sight degeneration and even blindness. Early detection is crucial due to provide effective treatment. Currently, diabetic retinopathy detection is time consuming process, done manualy by medical specialist. The disease is dangerous issue in places where the availability of phisicians is limited. We employed the computer system that detect diabetic retinopathy and assess a stage of the disease based on retinal photo of fundus. We used one of the best image classification system – deep neural networks. Employed system assess the stage of the disease in 5 level scale – from absence of disease to the most severe stage of disease. We employed transfer learning and data augmentation to enhance classification result. Moreover we proposed special class coding system to catch the difference between real and predicted stage of disease. We tested employed system using different statistical measures like accuracy, sensitivity, specificity and Kappa score.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparison of conventional and deep learning methods of image classification
Porównanie metod klasycznego i głębokiego uczenia maszynowego w klasyfikacji obrazów
Autorzy:
Dovbnych, Maryna
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2055127.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
image classification
machine learning
deep learning
neural networks
klasyfikacja obrazów
uczenie maszynowe
uczenie głębokie
sieci neuronowe
Opis:
The aim of the research is to compare traditional and deep learning methods in image classification tasks. The conducted research experiment covers the analysis of five different models of neural networks: two models of multi–layer perceptron architecture: MLP with two hidden layers, MLP with three hidden layers; and three models of convolutional architecture: the three VGG blocks model, AlexNet and GoogLeNet. The models were tested on two different datasets: CIFAR–10 and MNIST and have been applied to the task of image classification. They were tested for classification performance, training speed, and the effect of the complexity of the dataset on the training outcome.
Celem badań jest porównanie metod klasycznego i głębokiego uczenia w zadaniach klasyfikacji obrazów. Przeprowa-dzony eksperyment badawczy obejmuje analizę pięciu różnych modeli sieci neuronowych: dwóch modeli wielowar-stwowej architektury perceptronowej: MLP z dwiema warstwami ukrytymi, MLP z trzema warstwami ukrytymi; oraz trzy modele architektury konwolucyjnej: model z trzema VGG blokami, AlexNet i GoogLeNet. Modele przetrenowano na dwóch różnych zbiorach danych: CIFAR–10 i MNIST i zastosowano w zadaniu klasyfikacji obrazów. Zostały one zbadane pod kątem wydajności klasyfikacji, szybkości trenowania i wpływu złożoności zbioru danych na wynik trenowania.
Źródło:
Journal of Computer Sciences Institute; 2021, 21; 303--308
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozpoznawanie obiektów przez głębokie sieci neuronowe
Object classification with deep neural networks
Autorzy:
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268601.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
sztuczna inteligencja
przetwarzanie obrazu
deep learning
neural networks
artificial intelligence
image processing
Opis:
W referacie zaprezentowane zostaną wyniki badań nad rozpoznawaniem obiektów w różnych warunkach za pomocą głębokich sieci neuronowych. Przeanalizowano działanie dwóch struktur – ResNet50 oraz VGG19. Systemy rozpoznawania obrazu wytrenowano oraz przetestowano na reprezentatywnej, bazie zawierającej 25 tys. zdjęć psów oraz kotów, która znacznie upraszcza analizowanie działania systemów ze względu na łatwość interpretacji zdjęć przez człowieka. Zbadano wpływ pojawienia się nietypowych zdjęć na wynik klasyfikacji. Ponadto przeanalizowano zdjęcia niepoprawnie sklasyfikowane i porównano je z interpretacjami człowieka. Uzyskano bardzo wysokie wyniki klasyfikacji. Do oceny systemów użyto miar statystycznych takich jak: dokładność, czułość, swoistość, krzywe ROC.
Deep neural networks are modern algorithms from the family of artificial intelligence, that are widely used these days for task of an image analysis. In this paper, we present results of research on deep neural network for image recognition. We tested 2 different neural architectures, namely: modified VGG19, ResNet50. In order to improve the classification results we employed two methods called dropout and transfer learning. The systems were trained on the dataset containing 22 000 training images and 3000 test images. The dataset used contains different pictures of animals (cats and dogs). The dataset of animals make analyses of network performance easier, because they are easy to interpret by human. The employed systems were tested qualitatively and quantitatively. The influence of atypical inputs were examined, also. Moreover, the analysis of improperly classified images was performed. We achieved high classification results. In order to evaluate the classification performance we utilized the following set of statistical measures: accuracy, specificity, sensitivity and ROC curves.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 63-66
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie uczenia głębokiego w tłumaczeniu komputerowym
Application of deep learning in computer translation
Autorzy:
Handzel, Zbigniew
Gajer, Mirosław
Grabiński, Tadeusz
Luty, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/2147416.pdf
Data publikacji:
2021-12-06
Wydawca:
Wyższa Szkoła Ekonomii i Informatyki w Krakowie
Tematy:
sztuczna inteligencja
przekład komputerowy
sieci neuronowe
uczenie głębokie
artificial intelligence
computer translation
neural
networks
deep learning
Opis:
Przekład komputerowy jest najstarszym i zarazem najbardziej doniosłym zagadnieniem zaliczanym do obszaru sztucznej inteligencji. Pomysł zastosowania komputerów do tłumaczenia tekstów zapisanych w języku naturalnym jest prawie tak stary, jak sam wynalazek komputera. Pierwotnie rzecz wydawała się łatwa do realizacji i oczekiwano, że za kilkanaście lat zawód tłumacza ostatecznie zaniknie, ponieważ tego rodzaju prace będą wykonywały wyłącznie maszyny cyfrowe. Potrzeba było jednak ponad 60 lat intensywnych badań, aby marzenie to mogło się urzeczywistnić w czasach nam współczesnych. Przełomem w badaniach nad przekładem komputerowym było zastosowanie technik obliczeniowych bazujących na sztucznych sieciach neuronowych z wykorzystaniem algorytmów uczenia głębokiego. W 2017 roku uruchomiony został serwis tłumaczeniowy DeepL, który jest programem komputerowym wykorzystującym uczenie głębokie w translacji automatycznej. Rozważany program zapewnia przekład o bardzo wysokiej jakości pomiędzy dowolnie wybraną parą spośród ponad 20 języków. Między innymi program ten umożliwia tłumaczenie z i na język polski. W artykule przedstawiono krótką historię badań nad przekładem komputerowym, omówiono główne trudności, które należało przezwyciężyć na drodze do budowy tłumaczy komputerowych, oraz omówiono podstawowe podejścia wykorzystywane w translacji automatycznej. Na zakończenie zaprezentowano interesujące wyniki eksperymentów przeprowadzonych z udziałem programu DeepL, które dowodzą jego bardzo wysokiej skuteczności w tłumaczeniu pomiędzy dowolnie wybraną parą języków, niezależnie od stopnia ich genetycznego pokrewieństwa.
Computer-aided translation is the oldest and at the same time the most prominent subject in the field of artificial intelligence. The idea of using computers to translate texts written in natural language is almost as old as the invention of the computer itself. At first it seemed easy to implement and it was expected that in a decade or so the profession of translator would finally disappear because only digital machines would do this kind of work. However, it took more than 60 years of intensive research for this dream to become a reality in modern times. A breakthrough in computer translation research was the application of computational techniques based on artificial neural networks using deep learning algorithms. In 2017, the translation service DeepL was launched, which is a computer program using deep learning in automatic translation. The program under consideration provides translation of very high quality between any pair of more than 20 languages. Among other things, the programme enables translation from and into Polish. The article presents a brief history of research on computer-aided translation, discusses the basic difficulties that had to be overcome on the way to building computer-aided translators, and discusses the basic approaches used in automatic translation. Finally, interesting results of experiments carried out with the program DeepL are presented, which prove its very high efficiency in translation between any pair of languages, regardless of the degree of their genetic affinity
Źródło:
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie; 2021, 17; 71-92
1734-5391
Pojawia się w:
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory I: Deep networks and the curse of dimensionality
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200623.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep network
shallow network
convolutional neural network
function approximation
deep learning
sieci neuronowe
aproksymacja funkcji
uczenie głębokie
Opis:
We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 761-773
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka nawierzchni drogowej przy zastosowaniu metod sieci neuronowych – studium przypadku
Road pavement diagnostics using neural network methods – a case study
Autorzy:
Jóźwiak, Zuzanna
Pożarycki, Andrzej
Górnaś, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/24024764.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
sieci neuronowe
głębokie uczenie maszynowe
diagnostyka nawierzchni
obrazy cyfrowe
neural networks
deep machine learning
pavement diagnostics
digital images
Opis:
W artykule przedstawiono zastosowanie metody głębokiego uczenia maszynowego, wykorzystanej do jednego z zagadnień diagnostyki nawierzchni drogowej. Opisano techniki głębokiego uczenia maszynowego do rozpoznawania wybranej grupy uszkodzeń nawierzchni zarejestrowanych na obrazach cyfrowych. W ramach eksperymentu numerycznego porównano między sobą dwa modele powszechnie znane jako VGG16 i VGG19. Architektura sieci reprezentowana jest poprzez schemat połączeń charakterystyczny dla konwolucyjnych sieci neuronowych, które z założenia przeznaczone są na potrzeby identyfikacji obiektów na obrazach cyfrowych. Mimo wszystko źródłowa baza danych, znana pod angielską nazwą ImageNet, nie zawiera obrazów cyfrowych nawierzchni jezdni. W celu poszerzenia wiedzy w tym zakresie autorzy utworzyli bazę ortogonalnych obrazów cyfrowych nawierzchni jezdni i opisali jeden z możliwych scenariuszy wykorzystania tych narzędzi do zautomatyzowanej identyfikacji uproszczonej wersji wskaźnika stanu powierzchni.
This paper presents the application of deep machine learning method used for one of the problems of road pavement diagnostics. Deep machine learning techniques for the recognition of a selected group of pavement surface defects observed in digital images are described. In a numerical experiment, two models commonly known as VGG16 and VGG19 were compared to each other. The network architecture is represented by a connection scheme characteristic of convolutional neural networks, which by design are intended for the purpose of identifying objects in digital images. Nevertheless, the source database known as ImageNet does not contain digital images of pavement surfaces. In order to extend the knowledge in this area, the authors created a database of orthogonal digital images of pavement surfaces and described one of the possible scenarios of using these tools for automated identification of a simplified version of the surface condition index.
Źródło:
Drogownictwo; 2022, 2-3; 65--72
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies