Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "diagnostyka sieci" wg kryterium: Temat


Tytuł:
Implementacja podsystemu diagnostycznego okrętowego zespołu prądotwórczego w środowisku „Open Source”
Implementation of the diagnostic subsystem marine genset in an "Open Source "
Autorzy:
Szubrycht, T.
Powiązania:
https://bibliotekanauki.pl/articles/223236.pdf
Data publikacji:
2006
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
diagnostyka
sieci neuronowe
serwery sieciowe
diagnostics
neural networks
web servers
Opis:
W artykule przedstawiono zaprojektowany podsystem diagnostyki przewidziany do oceny stanu technicznego okrętowego zespołu prądotwórczego. Do przeprowadzenia analizy dostarczonych danych proponuje się wykorzystać sztuczne sieci neuronowe o architekturze determinowanej przez użytkownika. W celu obniżenia kosztów projektu implementację prezentowanego podsystemu diagnostyki zrealizowano w środowisku „Open Source”, czyli tzw. wolnego oprogramowania.
The paper presents a diagnostic subsystem designed to estimate the technical condition of a shipboard generator set. To analyze the data delivered using neural nets of user-determined architecture is suggested. In order to reduce the costs of the project the diagnostic system presented was implemented in „Open Source” environment.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2006, R. 47 nr 2 (165), 2 (165); 161-168
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych do identyfikacji pęknięcia stopy zęba
An identyfication of the degree of the tooth root cracking using the artificial neural network
Autorzy:
Łazarz, B.
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/328702.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka
przekładnie zębate
sieci neuronowe
diagnostics
toothed gears
neural networks
Opis:
W opracowaniu przedstawiono wyniki eksperymentu mającego na celu próbę zastosowania sztucznej sieci neuronowej jako klasyfikatora stopnia podcięcia zęba w przekładni zębatej. Klasyfikator neuronowy oparto na sztucznej sieci neuronowej typu SVM z jądrem radialnym. Dane wejściowe do klasyfikatora stanowiła macierz złożona z miar statystycznych. Zidentyfikowany model przekładni zębatej stanowiska FZG posłużył do generacji zbiór uczącego i testującego zastosowanego w eksperymencie.
The work presents results of an experiment that employs the artificial neuronal network in the task of identification of the degree of tooth root cracking. Neural Networks were based on the Support Vector Machine and the radial basis function kernel has been chosen in the experiments. Statistical measures that describe the emergence and degree of tooth gear diagnostic served as input data for the artificial neural networks. The measures employed in the experiment were obtained from signals through the application of a variety of processing methods.
Źródło:
Diagnostyka; 2004, 31; 79-88
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie dyskretnej transformaty falkowej i probabilistycznych sieci neuronowych w diagnostyce silników spalinowych
Discrete wavelet transform and probabilistic neural network in ic engine fault diagnosis
Autorzy:
Madej, H.
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/300909.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
diagnostyka
silniki spalinowe
sieci neuronowe
diagnostics
combustion engines
artificial neural networks
Opis:
W artykule przedstawiono próbę oceny stanu pracy silnika w warunkach symulowanego braku dopływu paliwa do poszczególnych cylindrów oraz próbę wykrywania uszkodzeń zaworów silnika spalinowego za pomocą sygnału drgań rejestrowanego na kadłubie silnika. Obiektem badań był czterocylindrowy silnik spalinowy. W badaniach za źródło informacji o stanie silnika przyjęto sygnały przyspieszeń drgań rejestrowane na kadłubie silnika ZI. W przypadku diagnozowania silnika spalinowego metodami drganiowymi nie można zapominać o występowaniu wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych w niniejszej pracy wykorzystano dyskretną transformatę falkową (DWT). Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania probabilistycznych sztucznych sieci neuronowych do oceny procesu dopływu paliwa do cylindrów oraz stanu zaworów w silnikach spalinowych.
The article presents an attempt of evaluating the state of engine operation under simulated shortage of fuel in? ow to individual cylinders and the attempt to detect the valve faults in the engine by using the vibroacoustic signal registered on the engine block. The object of research was a four-cylinder combustion engine. The vibration acceleration signals registered on the engine block ZI were assumed the source of information on the engine condition. In case of diagnosing combustion engines by vibration methods, the presence of numerous sources of vibration cannot be neglected, which are the reason for reciprocal interference of symptoms of fault. Owing to the necessity of analyzing non-stationary and impulse signals, a discrete wavelet transform (DWT) has been applied in this study. As results from the research, there is a possibility of using probabilistic artificial neural networks to assess the process of fuel inflow to cylinders and the condition of the valves in the combustion engines.
Źródło:
Eksploatacja i Niezawodność; 2010, 4; 47-54
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of cepstrum and spectrum histograms of vibration engine body for setting up the clearance model of the piston-cylinder assembly for RBF neural classifier
Wykorzystanie histogramów widma i cepstrum drgań korpusu silnika do budowy wzorców luzu w układzie tłok-cylinder dla klasyfikatora neuronowego RBF
Autorzy:
Czech, P.
Madej, H.
Powiązania:
https://bibliotekanauki.pl/articles/1366311.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
diagnostyka
silniki spalinowe
sieci neuronowe
diagnostics
combustion engines
artificial neural networks
Opis:
W artykule przedstawiono próbę oceny zużycia złożenia tłok-cylinder za pomocą sygnału drgań rejestrowanego na kadłubie silnika ZI. Obiektem badań był czterocylindrowy silnik spalinowy o pojemności 1,1 dm3. Diagnozowanie silnika spalinowego metodami drganiowymi jest szczególnie utrudniona ze względu na występowanie wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Diagnozowanie uszkodzeń silników metodami wibroakustycznymi jest trudne także ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych. W procesie diagnozowania stosuje się różne sposoby selekcji sygnału użytecznego. Zmiany stanu technicznego silnika wywołane wczesnymi fazami jego zużycia są trudne do wykrycia ze względu na maskowania usterek mechanicznych przez adaptacyjne układy sterowania silnika. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania sztucznych sieci neuronowych do oceny luzu w układzie tłok-cylinder.
The paper presents an attempt to evaluate the wear of piston-cylinder assembly with the aid of vibration signal recorded on spark ignition (SI) engine body. The subject of the study was a four-cylinder combustion engine 1.1 dm3. Diagnosing combustion engines with vibration methods is specifically difficult due to the presence of multiple sources of vibration interfering with the symptoms of damages. Diagnosing engines with vibro-accoustic methods is difficult also due to the necessity to analyse non-stationary and transient signals. Various methods for selection of usable signal are utilised in the diagnosing process. Changes of the engine technical condition resulting from early stages of wear are difficult to detect for the effect of mechanical defect masking by adaptive engine control systems. According to the studies carried out, it is possible to utilise artificial neural networks for the evaluation of the clearance in piston-cylinder assembly.
Źródło:
Eksploatacja i Niezawodność; 2011, 4; 15-20
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie algorytmów genetycznych oraz analizy PCA do doboru wejść klasyfikatorów uszkodzeń kół zębatych opartych na sieciach neuronowych z radialnym jądrem
Application of genetic algorithm and principal component analysis for choosing inputs for classifiers of tooth gear faults which used neural networks with radial nucleus
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/196879.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
diagnostyka
drgania
sieci neuronowe
przekładnie zębate
diagnostics
vibrations
neural networks
gearboxes
Opis:
W artykule przedstawiono wyniki eksperymentów mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni opartego na sztucznych sieciach neuronowych. W badaniach wykorzystywano sieci neuronowe z radialnym jądrem. Dodatkowo podjęto próbę wykorzystania algorytmów genetycznych oraz analizy PCA w celu wyboru wejść klasyfikatora neuronowego. Badania oparto na sygnałach drganiowych otrzymanych z modelu dynamicznego przekładni pracującej w układzie napędowym. W artykule zaproponowano sposób budowy deskryptorów lokalnych uszkodzeń zębów kół, wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz selekcji widmowej.
The paper presents the results of an experimental application of neural network as a classifier of tooth gear faults. The neural classifiers were based on the artificial neural networks with radial nucleus. In the experiment genetic algorithm and principal component analysis were used to check influence of choosing inputs for neural classifier on diagnostic error. The model of gearbox was used in order to create a base of knowledge. The input data for the classifier was in a form of matrix composed of statistical measures, obtained from vibration signals after filtration and selection of spectrum range.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2014, 83; 51-57
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inteligentny system monitorowania sieci wodociągowych
Intelligent monitoring of local water supply system
Autorzy:
Wyczółkowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/301876.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
sieci wodociągowe
diagnostyka
wyciek
lokalizacja
wykrywanie
sieci neuronowe
water supply systems
diagnostics
leakage detection
localization
artificial neural network
Opis:
W referacie przedstawiono badania związane z budową systemu monitorowania sieci wodociągowych, sygnalizujących pojawienie się awarii sieci i wspomagającego ich lokalizację. Podstawowym założeniem omawianego systemu było przyjęcie metody wykrywania awarii stosowanej dotychczas w diagnostyce technicznej maszyn i procesów przemysłowych, opartej o modele przybliżone obiektu diagnozowanego. Bazując na niewielkiej liczbie czujników przepływu zainstalowanych na sieci wodociągowej i odpowiednio wytrenowanej sztucznej sieci neuronowej pojawiające się awarie sieci są wykrywane i lokalizowane. Opisany został pierwszy etap prac (lokalizacja czujników pomiarowych, przygotowanie i trenowanie klasyfikatora neuronalnego) oraz uzyskane wyniki.
In the paper an intelligent monitoring system of local water supply system was described. The author took advantage of methods of artificial intelligence and methods known from model-based process diagnostics to decrease the number of indispensable measuring points. Basing on few flow sensors installed on pipeline network and using neural network as a model of pipeline, appeared leakages are approximately localized. The first stage of system building (choosing of sensor localization, neural network preparing and training) and results obtained to-date were shown.
Źródło:
Eksploatacja i Niezawodność; 2008, 1; 33-36
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka powierzchni z zastosowaniem sieci neuronowych
Surface diagnostics with neural net use
Autorzy:
Mikołajczyk, T.
Powiązania:
https://bibliotekanauki.pl/articles/329268.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka powierzchni
pomiary reflektometryczne
sieci neuronowe
surface diagnostics
reflectometric measure
neural networks
Opis:
W pracy przedstawiono zrealizowany w Katedrze Inżynierii Produkcji ATR Bydgoszcz układ do pomiaru stanu powierzchni metodą reflektometryczną. Opracowany układ zawiera oświetlacz laserowy i odbiornik w postaci diody. Sygnał z diody przesyłany jest do komputera przez kartę AC. W systemie analizy sygnału zastosowano sieć neuronową, którą zastosowano do skalowania układu. Dodatkowymi wejściami sieci są parametry technologiczne procesu. Uzyskane wyniki wskazują na poprawne działanie układu i możliwość jego praktycznego zastosowania do bezstykowej oceny stanu powierzchni.
In work presents system to surface roughness measure with reflectometric method, realized in Department of Production Engineering Technical & Agriculture University from Bydgoszcz of Poland. The results of reflectometric measure with feed and circle nose edge was used by neural network to investigations influence this parameters on surface roughness parameter. The useful neural network to scaling presented reflectometric stand was defined.
Źródło:
Diagnostyka; 2005, 33; 281-284
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of sensors in the control system of a steam turbine
Diagnostyka uszkodzeń torów pomiarowych w układzie sterowania turbiny parowej
Autorzy:
Pawlak, Mariusz
Buchta, Janusz
Oziemski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/106069.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu
Tematy:
diagnostic
turbine
control system
neural networks
diagnostyka
turbina
system sterowania
sieci neuronowe
Opis:
A diagnostic and control system for a turbine is presented. The influence of the turbine controller on regulation processes in the power system is described. Measured quantities have been characterized and methods for detecting errors have been determined. The paper presents the application of fuzzy neural networks (fuzzy-NNs) for diagnosing sensor faults in the control systems of a steam turbine. The structure of the fuzzy-NN model and the model’s method of learning, based on measurement data, are presented. Fuzzy-NNs are used to detect faults procedures. The fuzzy-NN models are created and verified.
Przedstawiono system diagnostyki dla układu sterowania turbiny parowej. Opisano procesy regulacji w systemie elektroenergetycznym oraz strukturę układu regulacji turbiny kondensacyjnej w układzie bloku energetycznego. Mierzone wielkości zostały scharakteryzowane wraz z metodami wykrywania uszkodzeń dla poszczególnych wielkości. W pracy przedstawiono zastosowanie rozmytych sieci neuronowych do detekcji uszkodzeń torów pomiarowych Przedstawiono strukturę modelu rozmytego i metodę uczenia modelu na podstawie danych pomiarowych. Zaprezentowano przykład zastosowania modelu FNN i zweryfikowano jego działanie na podstawie rzeczywistych danych pomiarowych.
Źródło:
Journal of Automation, Electronics and Electrical Engineering; 2019, 1, 1; 29-36
2658-2058
2719-2954
Pojawia się w:
Journal of Automation, Electronics and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie głębokie w diagnostyce medycznej
Deep Learning in Medical Diagnosis
Autorzy:
Antczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/404011.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci neuronowe
diagnostyka medyczna
uczenie głębokie
neural networks
medical diagnosis
deep learning
Opis:
W pracy przeanalizowano perspektywy zastosowania metod uczenia głębokiego w diagnostyce medycznej. Jedną z kluczowych cech uczenia głębokiego jest zdolność do wyodrębniania złożonych wzorców o strukturze hierarchicznej. Wzorce takie występują również w diagnostyce, jako tak zwane diamenty diagnostyczne. Zastosowanie głębokich sieci neuronowych mogłoby poprawić jakość klasyfikatorów wykrywających choroby na podstawie objawów. Dodatkowo umożliwiłoby to sterowanie czułoscią i swoistością klasyfikatorów.
In this paper we analyze perspectives of applying deep learning methods in a field of medical diagnosis. One of key features of deep learning is ability to extract complex, hierarchical patterns. Such patterns are present also in a medical diagnosis, where they are known as diagnostic diamonds. Applying deep neural networks could increase performance of medical classifiers. Moreover, it would allow to adjust sensitivity and specificity of classifiers.
Źródło:
Symulacja w Badaniach i Rozwoju; 2016, 7, 3-4; 83-88
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of some advanced signal processing techniques for rolling element bearing fault detection
Zastosowanie zaawansowanych metod analizy sygnału w wykrywaniu uszkodzeń elementów tocznych łożysk
Autorzy:
Yiakopoulos, C.
Antoniadis, I.
Powiązania:
https://bibliotekanauki.pl/articles/328017.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka łożysk
ślepa separacja sygnałów
sieci neuronowe
defective rolling element bearings
neural networks
Opis:
Vibration response of rotating machines is typically mixed and corrupted by a variety of interfering sources and noise, leading to the necessity for the isolation of the useful signal components. A relevant frequently encountered industrial case is the need for the separation of the vibration responses of the same type of bearings inside the same machine. For this purpose, a Blind Source Separation procedure is applied, based on the maximization of the information transferred in a neural network structure. As has been proven, this approach is quite effective in separating signals with super-Gaussian distributions, as it is the case of the vibration response of defective rolling element bearings. The role of the non-linear sigmoid function used in the neural network of the method is discussed and the Kullback-Leibler information divergence is considered as a tool to adapt this non-linearity to the bearing distributions considered. The effectiveness of the method is demonstrated in an experimental application, where a class of optimum non-linear functions is compared to the classical logistic function.
Sygnał drganiowy maszyn wirujących jest zazwyczaj zakłócony przez interferujące z nim sygnały innych źródeł oraz zakłócenia, co prowadzi do potrzeby ekstrachowania użytecznych składowych takiego sygnału. Często spotykanym w praktyce przemysłowej przypadkiem jest potrzeba separacji sygnałów drganiowych pochodzących od łożysk tego samego typu znajdujących się w tej samej maszynie. Do tego celu zastosowano procedurę ślepej separacji sygnałów wykorzystującą maksymalizację informacji przenoszonej przez strukturę sieci neuronowej. Zostało udowodnione, że w przypadku analizy sygnału wibroakustycznego generowanego przez uszkodzony element łożyska tocznego, takie podejście do separacji sygnałów może być efektywne przy założeniu ich super-gaussowskiego rozkładu. Rozważono możliwość adaptacji nieliniowej funkcji sigmoidalnej i dywergencji informacji Kullback-Leibler'a jako narzędzi wykrywania nieliniowości w sygnałach. W celu dostosowania nieliniowości do rozkładów sygnałów łożysk wykorzystywano nieliniową funkcję sigmoidalną oraz rozbieżność informacji Kullback-Leibler'a. Efektywność przedstawionej metody została zaprezentowana na przykładzie, w którym klasa optymalnych nieliniowych funkcji jest porównywana z klasycznymi funkcją logistyczną.
Źródło:
Diagnostyka; 2005, 36; 33-38
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
Diagnostics of induction motor bearings with use of supply current signal and artificial neural networks
Autorzy:
Ciszewski, T.
Swędrowski, L.
Powiązania:
https://bibliotekanauki.pl/articles/152328.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
diagnostyka
silnik indukcyjny
sieci neuronowe
uszkodzenia łożysk
diagnostics
induction motor
neural networks
bearings defects
Opis:
W artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych wybieranych na podstawie prędkości obrotowej silnika podczas pomiaru. Metoda ta ma szanse na wdrożenie w przemyśle.
The paper contains research results on the diagnostics of induction motor bearings by measuring the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, so their damage-free operation is so important [1]. Tests were performed on objects with intentionally made bearings defects. Section 2 introduces the concept of artificial neural networks. It presents the general structure of a multilayer neural network (Fig.1) and the model of a single neuron (Fig. 2) which explains how to create an output signal (1,2). A backpropagation algorithm was chosen to be the learning method for the network being created. It uses equation (4) for calculating the errors in the k-th layer. As the model data for the network learning, DREAM vibration diagnostics system results were used. Section 3 describes how the network input data was created. The essence of the algorithm is to choose the right set of weights for each rotor speed. This is an innovative solving of this diagnostic problem. The results of this study are listed in Table 1. Equations (6) - (14) describe how each error was counted. The method presented in this paper, after developing, can be very useful for industry.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 4, 4; 316-318
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Advances in model-based fault diagnosis with evolutionary algorithms and neural networks
Autorzy:
Witczak, M.
Powiązania:
https://bibliotekanauki.pl/articles/908460.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
diagnostyka uszkodzeń
algorytmy ewolucyjne
sieci neuronowe
odporność
fault diagnosis
evolutionary algorithms
neural networks
robustness
Opis:
Challenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, the classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as evolutionary algorithms and neural networks become more and more popular in industrial applications of fault diagnosis. The main objective of this paper is to present recent developments regarding the application of evolutionary algorithms and neural networks to fault diagnosis. In particular, a brief introduction to these computational intelligence paradigms is presented, and then a review of their fault detection and isolation applications is performed. Close attention is paid to techniques that integrate the classical and soft computing methods. A selected group of them is carefully described in the paper. The performance of the presented approaches is illustrated with the use of the DAMADICS fault detection benchmark that deals with a valve actuator.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 1; 85-99
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding
Hybrydowa metoda segmentacji obrazów cytologicznych oparta o konkurencyjne sieci neuronowe i adaptacyjne progowanie
Autorzy:
Kowal, M.
Filipczuk, P.
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/153798.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
segmentacja obrazu
sieci neuronowe
rak piersi
diagnostyka
image segmentation
neural networks
breast cancer
diagnosis
Opis:
The paper provides a preview of research on the computer system to support breast cancer diagnosis. The approach is based on analysis of microscope images of fine needle biopsy material. The article is devoted mainly to the segmentation problem. Hybrid segmentation algorithm based on competitive learning neural network and adaptive thresholding is presented. The system was tested on a set of real case medical images obtained from patients of the hospital in Zielona Góra with promising results.
Niniejszy artukuł przedstawia wyniki prac badawczych prowadzonych nad komputerowym systemem wspierającym diagnostykę raka piersi. Zaprezentowane podejscie oparte jest na analizie mikroskopowych obrazów materiału pozyskanego metodą biopsji cienkoigłowej bez aspiracji. Zadaniem systemu jest określenie czy badany przypadek jest zmianą łagodną czy złośliwą. Badania skupione są na dwóch głównych problemach. Pierwszym z nich jest segmentacja obrazów cytologicznych oraz ekstrakcja cech morfometrycznych jąder komórkowych występujących na rozmazach. Drugim problemem jest klasyfikacja raka sutka oraz odpowiedni dobór cech najlepiej opisujących daną klasę. W artykule autorzy położyli główny nacisk na opisie sposobu segmentacji obrazów. Poprawność procesu segmentacji w dużym stopniu decyduje o możliwości wykonania skutecznych pomiarów cech morfometrycznych jąder komórkowych i w konsekwencji dokonania właściwej diagnozy. W artykule przedstawiono hybrydowy algorytm segmentacji oparty o konkurencyjne sieci neuronowe i adaptacyjne progowanie. Jest to metoda alternatywna do zaprezentowanej wcześniej metody bazującej na rozmytym algorytmie c-średnich. Porównanie wyników obydwu metod zamieszczono w artykule. Automatyczny system wspierający diagnostykę raka piersi przetestowano na prawdziwych obrazach medycznych pacjentów regionalnego szpitala w Zielonej Górze. W przeprowadzonych eksperymetach uzyskano obiecujące wyniki.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 11, 11; 1448-1451
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja wykorzystania sygnałów wibroakustycznych i sieci neuronowych do diagnozowania uszkodzeń elementów silników spalinowych samochodów
Conception of use vibroacoustic signals and neural networks for diagnosing of chosen elements of internal combustion engines in car vehicles
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/196196.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
diagnostyka
sygnały WA
sieci neuronowe
silniki spalinowe
diagnostics
vibroacoustic signals
neural networks
combustion engines
Opis:
Obecnie stosowane systemy diagnostyki nie zawsze są skuteczne oraz nie dają jednoznacznych wyników pozwalających ocenić stan techniczny silnika oraz wykryć jego ewentualne uszkodzenia możliwie na wczesnych etapach. Rosnące wymagania dotyczące trwałości, niezawodności, minimalizacji kosztów i niekorzystnego oddziaływania na środowisko naturalne powodują konieczność pozyskiwania informacji o stanie technicznym poszczególnych elementów pojazdów podczas ich eksploatacji. Jedną z możliwości pozyskiwania informacji o stanie technicznym są zjawiska wibroakustyczne. Symptomy uszkodzeń, uzyskane w wyniku zaawansowanych metod przetwarzania sygnałów wibro-akustycznych, mogą stanowić wzorce wykorzystywane w trakcie budowy inteligentnego systemu diagnostycznego opartego na sztucznych sieciach neuronowych. W artykule przedstawiono koncepcję wykorzystania sztucznych sieci neuronowych do celów diagnozowania silników spalinowych samochodów.
Currently used diagnostics systems are not always efficient and do not give straightforward results which allow for the assessment of the technological condition of the engine or for the identification of the possible damages in their early stages of development. Growing requirements concerning durability, reliability, reduction of costs to minimum and decrease of negative influence on the natural environment are the reasons why there is a need to acquire information about the technological condition of each of the elements of a vehicle during its exploitation. One of the possibilities to achieve information about technological condition of a vehicle are vibroacoustic phenomena. Symptoms of defects, achieved as a result of advanced methods of vibroacoustic signals processing can serve as models which can be used during construction of intelligent diagnostic system based on artificial neural networks. The work presents conception of use artificial neural networks in the task of combustion engines diagnosis.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2014, 82; 51-58
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Micro milling machine – chosen aspects of diagnostic systems
Wybrane zagadnienia diagnostyki pracy mikrofrezarki
Autorzy:
Brolel-Plater, B.
Jaroszewski, K.
Dworak, P.
Powiązania:
https://bibliotekanauki.pl/articles/154807.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
micro milling machine
diagnostic system for micro milling machine
neural networks
mikrofrezarka
diagnostyka
sieci neuronowe
Opis:
The paper deals with one of designed diagnostic issues for micro milling machine. A short description of the designed and set in motion micro machine for milling is presented. A geometrical construction of the machine is considered. Drive and measurement systems are presented. Moreover capabilities of the machine are compared to conventional ones and advantages of the presented machine are listed. The machine supervisory control system, which is based on an artificial intelligence diagnostic system is described. Conducted in design process deliberations about types and structures of the net and form and source of the signals are discussed.
W artykule omawia się wybrane zagadnienia kontroli pracy i diagnostyki mikrofrezarki. Prezentuje się parametry konstrukcyjne zaprojektowanej i uruchomionej w Centrum Mechatroniki ZUT w Szczecinie maszyny SNTM-CM-ZUT-1. Przedstawiono konstrukcję geometryczną maszyny oraz jej systemy pomiarowe i napędowe. Porównano właściwości tej maszyny z rozwiązaniami stosowanymi w konwencjonalnych obrabiarkach numerycznych uwypuklając własności utrudniające precyzyjne nią sterowanie. Opisano system diagnostyki stanu maszyny i nadzoru jej pracy. Stan maszyny określany jest na podstawie pomiarów realizowanych z wykorzystaniem miniaturowych akcelerometrów umieszczonych na korpusie i wrzecionie maszyny. Rejestrowane przebiegi poddawane są przekształceniom FFT w matrycy FPGA a wyniki tych obliczeń wykorzystuje się następnie w klasyfikatorze neuronalnym. Prezentuje się rozważania przeprowadzone w procesie projektowania sieci dotyczące typu i struktury sieci oraz formy i źródła sygnałów. Przedstawia się strukturę i cechy systemu nadzoru pracy obrabiarki oraz formę prezentacji wyników modułu diagnostyki.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 1, 1; 61-64
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies