Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Radial-Basis Function Network" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Soft computing-based technique as a predictive tool to estimate blast-induced ground vibration
Autorzy:
Arthur, Clement Kweku
Temeng, Victor Amoako
Ziggah, Yao Yevenyo
Powiązania:
https://bibliotekanauki.pl/articles/1839011.pdf
Data publikacji:
2019
Wydawca:
Główny Instytut Górnictwa
Tematy:
radial basis function neural network
back propagation neural network
generalized regression neural network
wavelet neural network
group method of data handling
ground vibration
radialna funkcja bazowa
sieć neuronowa
GRNN
sieć falkowo-neuronowa
grupowa metoda przetwarzania danych
drgania gruntu
Opis:
The safety of workers, the environment and the communities surrounding a mine are primary concerns for the mining industry. Therefore, implementing a blast-induced ground vibration monitoring system to monitor the vibrations emitted due to blasting operations is a logical approach that addresses these concerns. Empirical and soft computing models have been proposed to estimate blast-induced ground vibrations. This paper tests the efficiency of the Wavelet Neural Network (WNN). The motive is to ascertain whether the WNN can be used as an alternative to other widely used techniques. For the purpose of comparison, four empirical techniques (the Indian Standard, the United State Bureau of Mines, Ambrasey-Hendron, and Langefors and Kilhstrom) and four standard artificial neural networks of backpropagation (BPNN), radial basis (RBFNN), generalised regression (GRNN) and the group method of data handling (GMDH) were employed. According to the results obtained from the testing dataset, the WNN with a single hidden layer and three wavelons produced highly satisfactory and comparable results to the benchmark methods of BPNN and RBFNN. This was revealed in the statistical results where the tested WNN had minor deviations of approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s, 0.0099 and 0.0168 from the best performing model of BPNN when statistical indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE), Correlation Coefficient (R) and Coefficient of determination (R2) were considered.
Źródło:
Journal of Sustainable Mining; 2019, 18, 4; 287-296
2300-1364
2300-3960
Pojawia się w:
Journal of Sustainable Mining
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ANN-based failure modeling of classes of aircraft engine components using radial basis functions
Modelowanie uszkodzeń elementów silnika samolotowego w oparciu o sztuczne sieci neuronowe o radialnych funkcjach bazowych
Autorzy:
Al-Garni, Ahmed
Abdelrahman, Wael
Abdallah, Ayman
Powiązania:
https://bibliotekanauki.pl/articles/301913.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
neural network
radial basis function
Reliability
engine components
sieć neuronowa
radialna funkcja bazowa
niezawodność
elementy silnika
Opis:
The objective of this research is to present a model to predict failure of two categories of critical aircraft engine components; nonrotating components such as valves and gearboxes, and rotating components such as engine turbines. The work utilizes Weibull regression and artificial neural networks employing Back Propagation (BP) as well as Radial Basis Functions (RBF). The model utilizes training failure data collected from operators of turboprop aircraft working in harsh desert conditions, where sand erosion is a detrimental factor in reducing turbine life. Accordingly, the model is more suited for accurate prediction of life of critical components of such engines. The algorithm, which uses Radial Basis Function (RBF) NN, uses a closest point specifier. The activation is based on the deviation of the earlier prototype from the input vector. Two earlier models are used for comparison purposes; namely Weibull regression modeling and Feed-Forward BP network. Comparison results show that the failure times represented by RBF are in better compromise with actual failure data than both earlier modeling methods. Moreover, the technique has comparatively higher efficiency as the neuron’s number in each layer of ANN is reduced, to decrease computation time, with minimum effect on the accuracy of results.
Celem pracy jest przedstawienie modelu służącego do predykcji uszkodzeń dwóch kategorii krytycznych elementów silnika samolotowego: elementów nieobrotowych, takich jak zawory i skrzynie biegów oraz elementów obrotowych, takich jak turbiny silnika. W pracy wykorzystano regresję Weibulla i sztuczne sieci neuronowe oparte na propagacji wstecznej oraz radialnych funkcjach bazowych (RBF). Model wykorzystuje dane o błędach zebrane od operatorów samolotów turbośmigłowych pracujących w trudnych warunkach pustynnych, gdzie erozja powodowana przez piasek stanowi szkodliwy czynnik ograniczający żywotność turbin. Prezentowany model jest więc szczególnie przydatny do trafnego prognozowania żywotności krytycznych elementów takich silników. Algorytm, który wykorzystuje sieci neuronowe o radialnych funkcjach bazowych, używa specyfikatora najbliższego punktu. Aktywacja bazuje na odchyleniu wcześniejszego prototypu od wektora wejściowego. Dwa wcześniejsze modele oparte na regresji Weibulla (Weibull regression modeling) oraz sieciach typu Feed-Forward Backpropagation wykorzystano do badań porównawczych. Wyniki porównania pokazują, że czasy uszkodzeń odwzorowane przez RBF pozostają w większej zgodzie z rzeczywistymi danymi o uszkodzeniach niż w przypadku obu wcześniejszych metod modelowania. Co więcej, technika ta ma porównywalnie większą efektywność, ponieważ liczba neuronów w każdej warstwie sieci neuronowej została zredukowana tak aby zmniejszyć czas obliczeń, przy minimalnym wpływie na dokładność wyników.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 2; 311-317
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults
Autorzy:
Kantue, Paulin
Pedro, Jimoh O.
Powiązania:
https://bibliotekanauki.pl/articles/2172129.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault tolerant control
quadrocopter
incipient actuator fault
radial basis function
neural network
sterowanie tolerujące uszkodzenia
kwadrokopter
radialna funkcja bazowa
sieć neuronowa
Opis:
An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 601--617
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies