Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SOM" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks
Autorzy:
Tambouratzis, T.
Chernikova, D.
Pzsit, I.
Powiązania:
https://bibliotekanauki.pl/articles/91759.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
shape
neutron
discrimination
gamma rays
Kohonen artificial neural networks
ANNs
linear vector quantisation
LVQ
self-organizing map
SOM
pulse shape discrimination
PSD
Opis:
The potential of two Kohonen artificial neural networks (ANNs) - linear vector quantisation (LVQ) and the self organising map (SOM) - is explored for pulse shape discrimination (PSD), i.e. for distinguishing between neutrons (n’s) and gamma rays (’s). The effect that (a) the energy level, and (b) the relative size of the training and test sets, have on identification accuracy is also evaluated on the given PSD dataset. The two Kohonen ANNs demonstrate complementary discrimination ability on the training and test sets: while the LVQ is consistently more accurate on classifying the training set, the SOM exhibits higher n/ identification rates when classifying new patterns regardless of the proportion of training and test set patterns at the different energy levels; the average time for decision making equals ˜100 μs in the case of the LVQ and ˜450 μs in the case of the SOM.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 2; 77-88
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie procesu osiadania terenu górniczego Kopalni Węgla Brunatnego Bełchatów - nowe podejście
Land subsidence modeling in mining area of open pit Brown Coal Mine Bełchatów - a new approach
Autorzy:
Palmąka, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074851.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Bełchatów
GIS
geostatystyka
interpolacja
modele liniowe
modele nieliniowe
osiadanie terenu
Sammon's mapping
mapy samoorganizujące się
SOM
sieci neuronowe
regresja liniowa
geostatistics
interpolation
linear models
land subsidence
self-organizing map
neural networks
multiple linear regression
Opis:
From the beginning of open-pit mining works (i.e. ground massive dewatering, access excavation, cover dumping) in 1976, which were strictly connected with an exposure a brown coal beds on Bełchatów field it was noticed, that a land surface subsided in the vicinity of Brown Coal Mine Bełchatów. Quantitative land subsidence assessments, which are based on deterministic models (elastic ground model, consolidation model), are not efficient enough to simulate the process – adjusted coefficient of determination amounts R2kor2kor
Źródło:
Przegląd Geologiczny; 2011, 59; 245-250
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies