Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "model górotworu" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Rozwarstwienie stropu w wyniku eksploatacji, systemem komorowo-filarowym z ugięciem stropu, złoża rud miedzi w LGOM
Deflection and stratification of the direct and basic roof during exploitation the copper deposit in LGOM
Autorzy:
Wosz, R.
Powiązania:
https://bibliotekanauki.pl/articles/350140.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
górotwór
eksploatacja
rozwarstwienie
model górotworu
zginanie belek na sprężystym podłożu
rock mass
underground excavation
deflection of beam on Winkler's ground
Opis:
Artykuł jest kontynuacją opisu zachowania się warstw górotworu nad eksploatowanym, systemem komorowo-filarowym z ugięciem stropu, złożem rud miedzi. W ramach dotychczas zrealizowanych prac opisano dwa sposoby zachowania się warstw stropowych z punktu widzenia koncentracji naprężenia i wytężenia górotworu, co w konsekwencji może spowodować powstanie i propagację lokalnej strefy zniszczenia materiału i utratę stateczności warstwy. Opisano wytężenie górotworu w warstwie stropu zasadniczego, który w zależności od fazy rozwoju eksploatacji jest belką jednostronnie utwierdzoną, zawisającą nad zrobami lub belką, jak wyżej, wspartą na zrobach. Prezentowany artykuł jest próbą opisania mechanizmu uginania warstw stropowych prowadzącego do rozwarstwienia stropu zbudowanego z dwóch różnych, pod względem fizyko-mechanicznym, ośrodków skalnych (dolomit i anhydryt). Rozwarstwienie będące wynikiem różnicy sztywności warstw stropu bezpośredniego (dolomit) i zasadniczego (anhydryt) inicjowane jest nad calizną i zrobami w ściśle określonych odległościach od linii frontu eksploatacji. Miejsca inicjacji rozwarstwienia - rozczepiania się warstw stropowych - obliczono, wyznaczając punkty przegięcia krzywej obniżenia tych warstw: punkt A rysunek 2 i punkt B rysunek 3.
The article is continuation of the research works concerning the principal and direct roof strata deflection above the deposit mined by means of the chamber-pillar system with roof deflection in the exploitation conditions of the copper deposits in LGOM. A model of the roof deflection and the solutions of the equations of the beam's axis deflection have been shown in the earlier papers. In this paper has presented the functions of the deflection with two points: A and B of start of stratification the Basic and Direct Roof. The Point A has located in the area over the seam of deposit, and the Point B - over the pillars. The new constants of equations have been calculated. The new lines describing deflection of the Roof Beams have been presented in the figure 2 and 3.
Źródło:
Górnictwo i Geoinżynieria; 2005, 29, 3; 63-70
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The possibilities of using anisotropic models of rock mass to describe deformations of the mining area surface
Możliwości zastosowania modeli anizotropowych górotworu do opisu deformacji powierzchni terenu górniczego
Autorzy:
Wesołowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/218806.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
górotwór
model obliczeniowy
niecka obniżeń
deformacje terenu
rock mass
calculation model
subsidence trough
area deformations
Opis:
This paper presents the analysis of numerical modeling results of the influence of mining exploitation influence on the deformations of the area surface, with the use of an anisotropic elasto-plastic ubiquitous joint model and the transversely isotropic elastic model. The comparison of computer modeling results and geodetic measurements shows that with the use of transversely isotropic elastic model and ubiquitous joint model there is a possibility of the simultaneous description of both perpendicular and horizontal displacements of the area surface, caused by mining exploitation.
Jak dotąd zasadniczym problemem związanym z modelowaniem numerycznym było zbudowanie modelu, który możliwie dokładnie opisywałby wszystkie etapy procesu deformacji górotworu. Niecki osiadania, uzyskiwane w wyniku modelowania numerycznego metodą elementów skończonych dla górotworu traktowanego jako ośrodek liniowo sprężysty izotropowy, znacznie różniły się od tych wyznaczanych z pomiarów geodezyjnych. Niecki te okazywały się zbyt rozległe i charakteryzowały się znacznie mniejszym (nawet 2,5-krotnie) nachyleniem zboczy w stosunku do niecek rzeczywistych. W celu wykazania, że stosowanie modeli numerycznych pozwala uzyskać w miarę dokładny opis rzeczywistych deformacji powierzchni terenu górniczego, przetestowano wiele modeli matematycznych, opisujących własności mechaniczne górotworu pod kątem zgodności z pomiarami geodezyjnymi. Testy te udowodniły, że w przypadku modelu liniowo sprężystego o transwersalnie izotropowej budowie warstw możliwe jest uzyskanie z obliczeń numerycznych w miarę dokładnego przybliżenia rzeczywistych deformacji powierzchni terenu górniczego (Tajduś, 2007; Białek et al., 2002; Mielimąka, 2009; Wesołowski et al., 2010). Pomimo poprawnego opisu deformacji powierzchni terenu stosowanie modelu transwersalnie izotropowego budzi wiele kontrowersji z uwagi na konieczność przyjęcia bardzo zróżnicowanych parametrów ośrodka w kierunku pionowym i poziomym. Pewne cechy podobieństwa do ośrodka transwersalnie izotropowego wykazuje model ubiquitous joint (Rys. 1). Odpowiednikiem kierunku prostopadłego do płaszczyzn izotropii modelu transwersalnie izotropowego może być tu kierunek prostopadły do płaszczyzn osłabienia. Model ubiquitous joint jest zatem anizotropowym modelem plastycznym zawierającym płaszczyzny osłabienia określonej orientacji. W modelu tym zaimplementowany został warunek wytrzymałościowy (uplastycznienia) Coulomba-Mohra. Do procesu modelowania numerycznego deformacji terenu górniczego, przeprowadzonego na potrzeby niniejszej pracy, wykorzystano program różnic skończonych FLAC (Itasca Consulting Group, Inc. 1992). Celem przeprowadzenia symulowanej komputerowej eksploatacji górniczej i określenia jej wpływu na deformacje powierzchni terenu zbudowano płaski model o wymiarach 2200 m × 913 m. Na głębokości 600 m (głębokość spągu pokładu) zamodelowano przeznaczony do eksploatacji pokład węgla o grubości 2 m. Schemat geometryczny modelu przedstawiono na Rys. 2. Wyniki symulacji komputerowej w zakresie opisu deformacji terenu górniczego porównane zostaną z przykładowymi pomiarami geodezyjnymi prowadzonymi na linii nr 100 podczas eksploatacji ścianowej pokładu 338/2 w KWK „Budryk” (Rys. 3). Parametry wytrzymałościowe oraz odkształceniowe warstw przyjęte zostały na podstawie literatury (Kidybiński, 1982; Prusek & Bock, 2008). Określając wartości parametrów płaszczyzn osłabienia posłużono się przypadkiem opisanym w pracy (Sainsbury et al., 2008). Zakres zmienności parametrów materiałowych warstw skalnych modelu ubiquitous joint oraz modelu transwersalnie izotropowego przyjęte do obliczeń przestawiono w tabelach 1 i 2. W pracy porównane zostały możliwości stosowania modelu transwersalnie izotropowego oraz modelu ubiquitous joint pod kątem zgodności opisu deformacji terenu górniczego wywołanych prowadzoną eksploatacją górniczą. W oparciu o wymienione powyżej modele górotworu przeprowadzona została symulacja komputerowa eksploatacji górniczej. Wyniki tych symulacji wykazały, że: 1. Przeprowadzony w ramach pracy cykl symulacji komputerowych wykazał, że zarówno dla modelu ubiquitous joint oraz modelu transwersalnie izotropowego istnieje możliwość jednoczesnego opisu zarówno pionowych, jak i poziomych ruchów górotworu, wywołanych eksploatacją górniczą. Uzyskanie bliskiego rzeczywistości opisu ruchów poziomych wymagało wprowadzenia płaszczyzn kontaktu (Interface) do modelowania połączeń międzywarstwowych. 2. Profil asymptotycznej niecki obniżeniowej ściany jest dla rozpatrywanych modeli asymetryczny względem wybranego pola. W profilach tych wartość maksymalnego nachylenia w rejonie krawędzi rozpoczynającej eksploatację jest nawet o kilkadziesiąt procent większa niż wartość maksymalnego nachylenia w rejonie krawędzi kończącej eksploatację. Podobne zależności dotyczą odkształceń poziomych. 3. Przedstawione wyniki symulacji komputerowych wskazują na to, że przy wykorzystaniu odpowiedniego ośrodka istnieje możliwość opisu kolejnych etapów deformacji terenu górniczego, w tym również wpływu kierunku prowadzenia eksploatacji na kształt profilu niecki obniżeniowej, kształtującej się nad postępującym frontem ścianowym. 4. Niewątpliwą zaletą modelu bazującego na ośrodku transwersalnie izotropowym jest stosunkowo mała ilość parametrów odkształceniowych koniecznych do obliczeń oraz możliwość łatwego dostosowania wyników obliczeń do wyników obserwacji geodezyjnych (Wesołowski, 2013). Uzupełnieniem prowadzonej analizy są rysunki 8 i 9 przedstawiające zasięg stref uplastycznienia rozpatrywanych układów modelu górotworu. Przeprowadzone w ramach pracy obliczenia komputerowe pokazały, że przy zastosowaniu numerycznych modeli górotworu opierającego się na sprężystym ośrodku transwersalnie izotropowym oraz anizotropowym modelu ubiquitous joint możliwy jest opis deformacji terenu górniczego jakościowo i ilościowo zgodny z obserwacjami geodezyjnymi.
Źródło:
Archives of Mining Sciences; 2016, 61, 1; 125-136
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies