Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sun, Y.-J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
An improved Otsu method for oil spill detection from SAR images
Autorzy:
Yu, F.
Sun, W.
Li, J.
Zhao, Y.
Zhang, Y.
Chen, G.
Powiązania:
https://bibliotekanauki.pl/articles/47553.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
remote sensing
oil spill
detection
Otsu's method
accident
marine transport
synthetic aperture radar
Opis:
In recent years, oil spill accidents have become increasingly frequent due to the development of marine transportation and massive oil exploitation. At present, satellite remote sensing is the principal method used to monitor oil spills. Extracting the locations and extent of oil spill spots accurately in remote sensing images reaps significant benefits in terms of risk assessment and clean-up work. Nowadays the method of edge detection combined with threshold segmenta- tion (EDCTS) to extract oil information is becoming increasingly popular. However, the current method has some limitations in terms of accurately extracting oil spills in synthetic aperture radar (SAR) images, where heterogeneous background noise exists. In this study, we propose an adaptive mechanism based on Otsu method, which applies region growing combined with both edge detection and threshold segmentation (RGEDOM) to extract oil spills. Remote sensing images from the Bohai Sea on June 11, 2011 and the Gulf of Dalian on July 17, 2010 are utilized to validate the accuracy of our algorithm and the reliability of extraction results. In addition, results according to EDCTS are used as a comparator to further explore validity. The comparison with results according to EDCTS using the same dataset demonstrates that the proposed self-adapting algorithm is more robust and boasts high-accuracy. The accuracy computing by the adaptive algorithm is significantly improved compared with EDCTS and threshold method.
Źródło:
Oceanologia; 2017, 59, 3
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Demonstration of a new indicator for studying upwelling in the Northern South China Sea
Autorzy:
Lin, L.
Wang, Y.-S.
Sun, C.-C.
Li, N.
Wang, H.
Mitchell, B.G.
Wu, M.-L.
Song, H.
Wu, J.-F.
Powiązania:
https://bibliotekanauki.pl/articles/48889.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
China Sea
cluster analysis
multivariate statistical analysis
principal component analysis
remote sensing
satellite monitoring
sea surface temperature
silicate
spatial distribution
upwelling
Opis:
In order to demonstrate that silicate (SiO3-Si) can be used as an indicator to study upwelling in the northern South China Sea, hierarchical cluster analysis (CA) and principle component analysis (PCA) were applied to analyse the metrics of the data consisting of 14 physical-chemical-biological parameters at 32 stations. CA categorized the 32 stations into two groups (low and high nutrient groups). PCA was applied to identify five Principal Components (PCs) explaining 78.65% of the total variance of the original data. PCA found important factors that can describe nutrient sources in estuarine, upwelling, and non-upwelling areas. PC4, representing the upwelling source, is strongly correlated to SiO3-Si. The spatial distribution of silicate from the surface to 200 m depth clearly showed the upwelling regions, which is also supported by satellite observations of sea surface temperature.
Źródło:
Oceanologia; 2011, 53, 2
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies