In recent years, oil spill accidents have become increasingly frequent due to the
development of marine transportation and massive oil exploitation. At present, satellite remote
sensing is the principal method used to monitor oil spills. Extracting the locations and extent of oil
spill spots accurately in remote sensing images reaps significant benefits in terms of risk assessment
and clean-up work. Nowadays the method of edge detection combined with threshold segmenta-
tion (EDCTS) to extract oil information is becoming increasingly popular. However, the current
method has some limitations in terms of accurately extracting oil spills in synthetic aperture radar
(SAR) images, where heterogeneous background noise exists. In this study, we propose an adaptive
mechanism based on Otsu method, which applies region growing combined with both edge
detection and threshold segmentation (RGEDOM) to extract oil spills. Remote sensing images
from the Bohai Sea on June 11, 2011 and the Gulf of Dalian on July 17, 2010 are utilized to validate
the accuracy of our algorithm and the reliability of extraction results. In addition, results according
to EDCTS are used as a comparator to further explore validity. The comparison with results
according to EDCTS using the same dataset demonstrates that the proposed self-adapting algorithm is more robust and boasts high-accuracy. The accuracy computing by the adaptive
algorithm is significantly improved compared with EDCTS and threshold method.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00