Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "differential method" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
A review: differential transform method for semi-analytical solution of differential equations
Autorzy:
Rashidi, M. M.
Rabiei, F.
Naser Nia, S.
Abbasbandy, S.
Powiązania:
https://bibliotekanauki.pl/articles/265637.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda transformacji różniczkowej
równania różniczkowe
metoda półanalityczna
differential transform method
differential transform - Pad'e approximation
semi-analytical method
differential equations
fuzzy differential transformation method
gS-differentiability
Opis:
In this article, the semi-analytical method known as the Differential Transform Method (DTM) for solving different types of differential equations is reviewed. First, basic definitions and formulas of DTM and Differential Transform-Padé approximation (DTM-Padé), which are used to increase the convergence and accuracy of DTM approximations, are discussed. Then both techniques of DTM and DTM-Padé, which have been successfully applied to partial differential equations, as well as the application of these methods in fluid mechanic and heat transfer are presented. In addition, the extension of DTM for integral differential equations and the fuzzy differential transformation method (FDTM) for fuzzy problems are discussed.
Źródło:
International Journal of Applied Mechanics and Engineering; 2020, 25, 2; 122-129
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Problem with integral condition for evolution equation
Autorzy:
Kalenyuk, P. I.
Kuduk, G.
Kohut, I. V.
Nytrebych, Z. M.
Powiązania:
https://bibliotekanauki.pl/articles/357782.pdf
Data publikacji:
2015
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
analiza funkcjonalna
przestrzeń Banacha
równania ewolucyjne
równania różniczkowe
functional analysis
Banach space
evolution equation
integral conditions
differential-symbol method
Opis:
We propose a method of solving the problem with non-homogeneous integral condition for homogeneous evolution equation with abstract operator in a linear space H. For right-hand side of the integral condition which belongs to the special subspace H ⊆ L, in which the vectors are represented using Stieltjes integrals over a certain measure, the solution of the problem is represented in the form of Stieltjes integral over the same measure.
Źródło:
Journal of Mathematics and Applications; 2015, 38; 71-76
1733-6775
2300-9926
Pojawia się w:
Journal of Mathematics and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical solution of the time fractional Fokker-Planck equation
Autorzy:
Sutradhar, T.
Datta, B. K.
Bera, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/955129.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
równanie Fokkera-Plancka
równania różniczkowe
mechanika stosowana
Fokker-Planck equation
Adomian decomposition method
fractional calculus
fractional differential equation
Opis:
A nonperturbative approximate analytic solution is derived for the time fractional Fokker-Planck (F-P) equation by using Adomian’s Decomposition Method (ADM). The solution is expressed in terms of Mittag-Leffler function. The present method performs extremely well in terms of accuracy, efficiency and simplicity.
Źródło:
International Journal of Applied Mechanics and Engineering; 2014, 19, 2; 435-440
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differential equation of x = f(y) and interpretation of the solution in Mathematica program
Równanie różniczkowe typu x = f(y) i interpretacja rozwiązania w programie Mathematica
Autorzy:
Czajkowski, Andrzej Antoni
Oleszak, Wojciech Kazimierz
Frączak, Piotr Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/135928.pdf
Data publikacji:
2019
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
differential equations
equation of type x=f(y')
analytical solution
variable substitution method
geometric interpretation of the solution
Mathematica program
równania różniczkowe
równanie typu y=f(y')
rozwiązanie analityczne
metoda podstawienia nowej zmiennej
interpretacja geometryczna rozwiązania
program Mathematica
Opis:
Introduction and aims: The paper presents a method of solving x=f(y') equations. The main aim of the work is to show how to solve this type of differential equations. In addition, the purpose of the discussion is to present the appropriate algorithms in Mathematica program, which are used to present the geometric interpretation of the obtained solutions. Material and methods: The sources contain material on the subject of differential equations. The method of mathematical analysis has been used. Results: In the analysis of selected examples, the method of substitution of new variable t has been used and the solution of the studied differential equation has been obtained in the form of the system of equations x=x(t) and y=y(t). Conclusion: The solution of the differential equation of the type x=f(y') in the form of a system of equations x=x(t) and y=y(t) can be interpreted graphically using an appropriately used algorithm in Mathematica numerical program.
Wstęp i cele: W pracy przedstawiono metodę rozwiązywania równań typu y=f(y'). Głównym celem pracy jest pokazanie sposobu rozwiązywania tego typu równań różniczkowych. Ponadto celem rozważań jest przestawienie odpowiednich algorytmów w programie Mathematica, które służą do przedstawienia interpretacji geometrycznej otrzymanych rozwiązań. Materiały i metody: Źródła zawierają materiał dotyczący tematyki równań różniczkowych. Zastosowano metodę analizy matematycznej. Wyniki: W analizie wybranych przykładów zastosowano metodę podstawienia nowej zmiennej t i otrzymano rozwiązanie badanego równania różniczkowego w postaci układu równań x=x(t) i y=y(t). Wniosek: Rozwiązanie równania różniczkowego typu y=f(y') w postaci układu równań x=x(t) i y=y(t) można zinterpretować graficznie stosując odpowiednio zastosowany algorytm w programie numerycznym Mathematica.
Źródło:
Problemy Nauk Stosowanych; 2019, 10; 15-24
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differential equation of y = f(y) and interpretation of the solution in Mathematica program
Równanie różniczkowe typu y = f(y) i interpretacja rozwiązania w programie Mathematica
Autorzy:
Czajkowski, Andrzej Antoni
Oleszak, Wojciech Kazimierz
Frączak, Piotr Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/135726.pdf
Data publikacji:
2019
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
differential equations
equation of type y=f(y')
analytical solution
variable substitution method
geometric interpretation of the solution
Mathematica program
równania różniczkowe
równanie typu y=f(y')
rozwiązanie analityczne
metoda podstawienia nowej zmiennej
interpretacja geometryczna rozwiązania
program Mathematica
Opis:
Introduction and aims: The paper presents a method of solving y=f(y') equations. The main aim of the work is to show how to solve this type of differential equations. In addition, the purpose of the discussion is to present the appropriate algorithms in Mathematica program, which are used to present the geometric interpretation of the obtained solutions. Material and methods: The sources contain material on the subject of differential equations. The method of mathematical analysis has been used. Results: In the analysis of selected examples, the method of substitution of new variable t has been used and the solution of the studied differential equation has been obtained in the form of the system of equations x=x(t) and y=y(t). Conclusion The solution of the differential equation of the type y=f(y') in the form of a system of equations x=x(t) and y=y(t) can be interpreted graphically using an appropriately used algorithm in Mathematica numerical program.
Wstęp i cele: W pracy przedstawiono metodę rozwiązywania równań typu y=f(y'). Głównym celem pracy jest pokazanie sposobu rozwiązywania tego typu równań różniczkowych. Ponadto celem rozważań jest przestawienie odpowiednich algorytmów w programie Mathematica, które służą do przedstawienia interpretacji geometrycznej otrzymanych rozwiązań. Materiały i metody: Źródła zawierają materiał dotyczący tematyki równań różniczkowych. Zastosowano metodę analizy matematycznej. Wyniki: W analizie wybranych przykładów zastosowano metodę podstawienia nowej zmiennej t i otrzymano rozwiązanie badanego równania różniczkowego w postaci układu równań x=x(t) i y=y(t). Wniosek: Rozwiązanie równania różniczkowego typu y=f(y') w postaci układu równań x=x(t) i y=y(t) można zinterpretować graficznie stosując odpowiednio zastosowany algorytm w programie numerycznym Mathematica.
Źródło:
Problemy Nauk Stosowanych; 2019, 10; 25-34
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies