Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "divisibility" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Mathematical induction in proving of theorems about natural numbers divisibility
Indukcja matematyczna w dowodzeniu twierdzeń o podzielności liczb naturalnych
Autorzy:
Żywuszko, K.
Czajkowski, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/135988.pdf
Data publikacji:
2013
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
natural numbers
divisibility
proof
mathematical induction
liczby naturalne
podzielność
dowód
indukcja matematyczna
Opis:
Introduction and aims: This paper presents the concept of the division of mathematical expressions with natural variable related to the problem of divisibility. The paper shows some proofs of selected problem. The main aim of this paper is to show a few proofs of theorems about divisibility of expressions by using the method of mathematical induction. Material and methods: In this paper have been solved examples from different sources. Considered problems contain: only polynomials, the sum of powers of different bases (and constant as a component), the sum of the products of powers with different bases (and constant as a component), the sum of the powers and polynomials, the sum of the products of powers and polynomials, the sum containing the power of (-1), Fibonacci sequence, the expression containing a power of the power and problems containing power in divider. In the paper has been used the method of mathematical induction. Results: It has been shown 16 proofs of problems by using mathematical induction. In some examples have been used the additional lemmas which complete the main proof. Conclusion: Using some properties of divisibility theorems and the theorem about mathematical induction allow to show proofs which refer to the divisibility by natural number of various mathematical expressions with natural variable n.
Wstęp i cele: W pracy przedstawiono koncepcję podziału wyrażeń matematycznych ze zmienną naturalną odnoszących się do problemu podzielności a także przedstawiono dowody wybranych zadań. Głównym celem pracy jest pokazanie sposobu dowodzenia twierdzeń o podzielności wyrażeń przy zastosowaniu metody indukcji matematycznej. Materiał i metody: W pracy rozwiązano przykłady z różnych źródeł. Rozważono zadania zawierające: tylko wielomiany, sumy potęg o różnych podstawach (i stałą w roli składnika), sumy iloczynów potęg o różnych podstawach (i stałą w roli składnika), sumy potęg i wielomianów, sumy iloczynów potęg i wielomianów, sumy zawierające potęgę (-1), ciąg Fibonacciego, wyrażenia zawierające potęgę potęgi oraz zadania zawierające potęgę w dzielniku. Zastosowano metodę indukcji matematycznej. Wyniki: Przeprowadzono dowody 16 przykładów przy użyciu indukcji matematycznej. W niektórych przykładach zastosowano dodatkowo dowody lematów, które uzupełniają całość dowodu głównego. Wniosek: Korzystanie z pewnych właściwości twierdzeń o podzielności i twierdzenia o indukcji matematycznej pozwala pokazać dowody, które odnoszą się do podzielności przez liczby naturalne różnych wyrażeń matematycznych ze zmienną naturalną.
Źródło:
Problemy Nauk Stosowanych; 2013, 1; 101-116
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Divisibility of the second-order minors of the nominators by minimal denominators of transfer matrices of cyclic fractional linear systems
Autorzy:
Kaczorek, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/2055172.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
divisibility
second order minor
transfer matrix
cyclic system
fractional system
linear system
podzielność
macierz transferu
układ cykliczny
układ ułamkowy
układ liniowy
Opis:
The divisibility of the second-order minors of the numerators of transfer matrices by their minimal denominators for cyclic fractional linear systems is analyzed. It is shown that all nonzero second-order minors of the numerators of the transfer matrices are divisible by their minimal denominators if and only if the system matrices of fractional standard and descriptor linear systems are cyclic. The theorems are illustrated by examples of fractional standard and descriptor linear systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 627--633
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies