Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image recognition" wg kryterium: Temat


Tytuł:
Klasyfikacja tekstur za pomocą SVM - Maszyny Wektorów Wspierających
Texture classification using Support Vector Machine
Autorzy:
Goszczyński, J.
Powiązania:
https://bibliotekanauki.pl/articles/289416.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
maszyna wektorów wspierających
rozpoznawanie wzorców
rozpoznawanie obrazów
rolniczy robot mobilny
support vector machine (SVM)
pattern recognition
image recognition
agriculture mobile robot
Opis:
Motywacją do badań był pomysł wytworzenia robota-kosiarki wyposażonego w system komputerowego widzenia. Rozpoznawanie obrazu może zostać zrealizowane za pomocą klasyfikacji tekstur obiektów, które otaczają robota. Artykuł przedstawia przykład klasyfikacji tekstur za pomocą Maszyny wektorów wspierających SVM (ang. Support Vector Machine) Do badań wykorzystano oprogramowanie LIBSVM.
Motivation for research was idea to create mower robot with computer vision system. Image recognition can be done by textures classification of objects that robot is surrounded. This article has reviewed example of texture classification by SVM Support vector machine. For research was used LIBSVM software.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 13(88), 13(88); 119-126
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Review of face recognition algorithms
Autorzy:
BUKOWSKI, MICHAŁ
Powiązania:
https://bibliotekanauki.pl/articles/1798781.pdf
Data publikacji:
2021-04-21
Wydawca:
Wyższa Szkoła Policji w Szczytnie
Tematy:
face recognition
biometrics
image processing
pattern recognition
neural network
Opis:
Information technology of the 20th and 21st centuries “opened the way” to the automatic assessment of anthropometric facial features, facial gestures and other characteristic behaviours. Recognition is a very complex technical problem with a signifi cant practical effect. There are dedicated applications for this purpose. The article presents face recognition algorithms for 2D images, for three-dimensional spaces, and methods using neural networks. Linear and nonlinear, local and global, and hybrid methods of facial recognition are presented. The study understands the strengths and weaknesses of the laws governing the use of face recognition technology and, if possible, analyses their effi ciency. The methodological review has been created in connection with the idea of the author’s own fast algorithms and facial recognition.
Źródło:
Przegląd Policyjny; 2020, 140(4); 209-243
0867-5708
Pojawia się w:
Przegląd Policyjny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of pattern recognition methods to automatic identification of microscopic images of rocks registered under different polarization and lighting conditions
Autorzy:
Ślipek, B.
Młynarczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/184708.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
pattern recognition
automatic rock classification
image processing
Opis:
The paper presents the results of the automatic classification of rock images, taken under an optical microscope under different lighting conditions and with different polarization angles. The classification was conducted with the use of four pattern recognition methods: nearest neighbor, k-nearest neighbors, nearest mode, and optimal spherical neighborhoods on thin sections of five selected rocks. During research the CIELAB color space and the 9D feature space were used. The results indicate that changing both lighting conditions and polarization angles results in worsening the classification outcome, although not substantially. Duduring the automatic classification of rocks photographed under different lighting and polarization conditions, the highest number of correctly classified rocks (97%) is given by the nearest neighbor method. The results show that the automatic classification of rocks is possible within a predefined group of rocks. The results also indicate the optimal spherical neighborhoods method to be the safest method out of those tested, which means that it returns the lowest number of incorrect classifications.
Źródło:
Geology, Geophysics and Environment; 2013, 39, 4; 373-384
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Niektóre aspekty przetwarzania obrazów wizualnych
Some aspects of visual images processing
Autorzy:
Młodkowski, Jan
Powiązania:
https://bibliotekanauki.pl/articles/2139558.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
pattern recognition
optical picture construction
visual image processing
Opis:
Image is a fundamental concept for the subject being presented. The word “image” has especially multiple meanings. This paper contains some connotations of the notion of image with common knowledge, philosophy, physics, physiology and psychology. As the general conclusion coming from the presented review is the approval of the conception of image as a contemporary mentality paradigm. Philosophers actually tested if the world without the image as a constructional element is possible and how it could look like, and if the image is possible to exist without its object. In the cognitive psychology image processing is interpreted depending on the position regarding the number of existing codes. This paper refers to the author’s opinion that content processing depends on the form, vocabulary and alphabet that are used to express this content. The specificity of visual image processing is characterized by multidimensionality, adaptivity, intermodality and elasticity. These notions are explained in the paper.
Źródło:
Acta Universitatis Lodziensis. Folia Psychologica; 2007, 11; 161-173
2353-4842
Pojawia się w:
Acta Universitatis Lodziensis. Folia Psychologica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methods for Classification of Tactile Patterns in General Position by Helmholtzs Equation
Autorzy:
Volf, J.
Dvorak, M.
Vlcek, J.
Powiązania:
https://bibliotekanauki.pl/articles/384955.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
pattern recognition
Helmholtz's equation
tactile image
tactile information
Opis:
This paper describes new and original methods of tactile pattern recognition in general position applying the solution of Helmholtz's equation for a tactile transducer. Three groups of methods have been formed, based on: (a) calculation of the A matrix eigen value, with the matrix being formed either from the whole pattern, or from the limit points; (b) the scalar characteristic distribution of the components of the pattern's A matrix; (c) the geometrical properties of the A matrix of the pattern. The patterns have been classified into five groups.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2008, 2, 4; 59-63
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of human eye components on the basis of multispectral imaging
Autorzy:
Michalak, M.
Nurzyńska, K.
Świtoński, A.
Powiązania:
https://bibliotekanauki.pl/articles/333415.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
analiza wielospektralna
przetwarzanie obrazów
segmentacja obrazu
pattern recognition
multispectral analysis
image processing
image segmentation
Opis:
In this paper the methods for selecting of the most important parts of the human eyes are described. On the basis of the real 21 channel multispectral images the model of finding the lens and the spot are defined. These methods are based on the most popular algorithms of image processing. The approach to veins detection is still undefined but in the article the most important channels are pointed out and the channel difference between eyelash and the veins is also mentioned.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 19; 41-47
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graph-based segmentation with homogeneous hue and texture vertices
Autorzy:
Ngo, Lua
Han, Jae-Ho
Powiązania:
https://bibliotekanauki.pl/articles/2033896.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
image segmentation
deep neural network
electron microscopy
optical coherence tomography
pattern recognition
Opis:
This work presents an automated segmentation method, based on graph theory, which processes superpixels that exhibit spatially similarities in hue and texture pixel groups, rather than individual pixels. The graph shortest path includes a chain of neighboring superpixels which have minimal intensity changes. This method reduces graphics computational complexity because it provides large decreases in the number of vertices as the superpixel size increases. For the starting vertex prediction, the boundary pixel in first column which is included in this starting vertex is predicted by a trained deep neural network formulated as a regression task. By formulating the problem as a regression scheme, the computational burden is decreased in comparison with classifying each pixel in the entire image. This feasibility approach, when applied as a preliminary study in electron microscopy and optical coherence tomography images, demonstrated high measures of accuracy: 0.9670 for the electron microscopy image and 0.9930 for vitreous/nerve-fiber and inner-segment/outer-segment layer segmentations in the optical coherence tomography image.
Źródło:
Optica Applicata; 2021, 51, 4; 541-549
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A mathematical model of the left ventricle surface and a program for visualization and analysis of cardiac ventricle functioning
Autorzy:
Hoser, P.
Powiązania:
https://bibliotekanauki.pl/articles/1965795.pdf
Data publikacji:
2004
Wydawca:
Politechnika Gdańska
Tematy:
cardiac diagnostics
pattern recognition
contour detection
expert system
image processing
computer graphics
Opis:
The left heart chamber's contractibility is an important part of heart diagnostics. Ultrasonographic pictures are very often used as the imaging method, as they are widely available, inexpensive and non-invasive. However, ultrasonographic pictures are very unclear, blurred and noisy, and thus very difficult for automatic analysis. To obtain a quick and useful analysis of ventricle performance, a special mathematical model has been created. The model can be used in contour detection, visualization of the heart's motion and even in automatic surface analysis. We hope that in the future such programs could be incorporated into a general medical expert system.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2004, 8, 2; 249-257
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Could k-NN classifier be Useful in tree leaves recognition?
Autorzy:
Horaisová, K.
Powiązania:
https://bibliotekanauki.pl/articles/229900.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
binary image
Fourier transform
affine invariance
harmonic analysis
pattern recognition
k-NN classifier
Opis:
This paper presents a method for affine invariant recognition of two-dimensional binary objects based on 2D Fourier power spectrum. Such function is translation invariant and their moments of second order enable construction of affine invariant spectrum except of the rotation effect. Harmonic analysis of samples on circular paths generates Fourier coefficients whose absolute values are affine invariant descriptors. Affine invariancy is approximately saved also for large digital binary images as demonstrated in the experimental part. The proposed method is tested on artificial data set first and consequently on a large set of 2D binary digital images of tree leaves. High dimensionality of feature vectors is reduced via the kernel PCA technique with Gaussian kernel and the k-NN classifier is used for image classification. The results are summarized as k-NN classifier sensitivity after dimensionality reduction. The resulting descriptors after dimensionality reduction are able to distinguish real contours of tree leaves with acceptable classification error. The general methodology is directly applicable to any set of large binary images. All calculations were performed in the MATLAB environment.
Źródło:
Archives of Control Sciences; 2014, 24, 2; 177-192
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The concept of an intelligent system of an outfit completion
Autorzy:
Semianchuk, Sofiia
Shestakevych, Tetiana
Powiązania:
https://bibliotekanauki.pl/articles/1833886.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
neural network
wardrobe
pattern recognition
image classification
convolutional neural networks
Analytic Hierarchy Process
Opis:
The article considers the main criteria for the selection and formation of the wardrobe, which is one of the areas of application of methods and means for image classification. Typical software solutions for the task are analyzed, and the Analytic Hierarchy Process was used to analyze such applications. To improve the wardrobe selection process, the concept of an intelligent information system based on the use of convolutional neural networks was proposed.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2020, 9, 2; 30--36
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bivariate Hahn moments for image reconstruction
Autorzy:
Wu, H.
Yan, S.
Powiązania:
https://bibliotekanauki.pl/articles/331058.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
bivariate Hahn moments
bivariate Hahn polynomials
image reconstruction
pattern recognition
odtworzenie obrazu
rozpoznawanie obrazu
Opis:
This paper presents a new set of bivariate discrete orthogonal moments which are based on bivariate Hahn polynomials with non-separable basis. The polynomials are scaled to ensure numerical stability. Their computational aspects are discussed in detail. The principle of parameter selection is established by analyzing several plots of polynomials with different kinds of parameters. Appropriate parameters of binary images and a grayscale image are obtained through experimental results. The performance of the proposed moments in describing images is investigated through several image reconstruction experiments, including noisy and noise-free conditions. Comparisons with existing discrete orthogonal moments are also presented. The experimental results show that the proposed moments outperform slightly separable Hahn moments for higher orders.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 2; 417-428
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic detection and counting of platelets in microscopic image
Autorzy:
Burduk, R.
Krawczyk, B.
Powiązania:
https://bibliotekanauki.pl/articles/333065.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
nauczanie maszynowe
analiza obrazu
pattern recognition
bioinformatic
machine learning
image analysis
platelet
Opis:
In this paper we present a machine learning-based approach for detecting platelet cells in microscopic smear images. Counting how many platelets appeared in each smear image is one of the basic tasks done in many laboratories. In many cases this is still done by a human — laboratory technician. Due to very small size and often great quantity of those cells, precise estimating of the number of platelets is not a trivial task. As in all man-dependent problems the whole process is very sensitive to errors, time-consuming and its accuracy is limited by human perception. We propose alternative, fully automatic solution that is free of those drawbacks. Our idea is based on the combination of techniques driven from two fields of modern computer science: the image analysis and pattern recognition ⁄ machine learning. It not only reduces the error rate, but, what is more important, also decreases the time needed for each smear image analysis. The obtained results are very satisfying and our solution is more precise than estimation based on human perception. This will improve the quality of laboratory work and allow to save time that can be spent on other important tasks.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 173-178
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
IMAGE PATTERN ANALYSIS WITH IMAGE POTENTIAL TRANSFORM
Autorzy:
Oleg, Butusov
Dikusar, Vasily
Powiązania:
https://bibliotekanauki.pl/articles/452838.pdf
Data publikacji:
2018
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
binary image transform
distance and potential transform
statistical indices
geometric signatures
pattern analysis
pattern recognition
Opis:
Pattern analysis with image transform based on potential calculation was considered. Initial gray-scale image is sliced into equidistant levels and resulting binary image was prepared by joining of some levels to one binary image. Binary image was transformed under assumption that white pixels in it may be considered as electric charges or spins. Using this assumption Ising model and Coulomb model interaction between white pixels was used for image potential transform. The transform was calculated using moving window. The resulting gray-scale image was again transformed to binary image using the thresholding on 0.5 level. Further binary images were analyzed using statistical indices (average, standard deviation, skewness, kurtosis) and geometric signatures: area, eccentricity, Euler number, orientation and perimeter. It was found that the most suitable geometric signature for pattern configuration analysis of Ising potential transform (IPT) and Coulomb potential transform (CPT) is area value. Similarly the most suitable statistics is distance statistics between white pixels.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2018, 19, 1; 12-27
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych do wykrywania i rozpoznawania tablic rejestracyjnych na zdjęciach pojazdów
Detection and recognition of registration plates on pictures of vehicles using artificial neural network
Autorzy:
Huzarek, M.
Rutkowski, T. A.
Powiązania:
https://bibliotekanauki.pl/articles/267795.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
przetwarzanie obrazu
lokalizacja obiektów
rozpoznawanie wzorców
sieci neuronowe
image processing
object localization
pattern recognition
neural networks
Opis:
W artykule przedstawiono koncepcję algorytmu wykrywania i rozpoznawania tablic rejestracyjnych (AWiRTR) na obrazach cyfrowych pojazdów. Detekcja i lokalizacja tablic rejestracyjnych oraz wyodrębnienie z obrazu tablicy rejestracyjnej poszczególnych znaków odbywa się z wykorzystaniem podstawowych technik przetwarzania obrazu (przekształcenia morfologiczne, wykrywanie krawędzi) jak i podstawowych danych statystycznych obiektów wykrytych w obrazie (np. stosunek szerokość do wysokość obiektu). Natomiast za rozpoznawanie poszczególnych znaków odpowiedzialna jest wielowarstwowa, jednokierunkowa sztuczna sieć neuronowa. Przedstawiony algorytm został zaimplementowany i zweryfikowany w środowisku Matlab/Simulink. Pomimo wykorzystania w algorytmie AWiRTR dobrze znanych z literatury metod lokalizacji, segmentacji i rozpoznawania wzorców, otrzymane w trakcie weryfikacji algorytmu wyniki wskazują jego efektywność na poziomie 96,26%. Jest ona porównywalna do efektywności innych algorytmów AWiRTR opisywanych w literaturze.
A license plate detection and recognition system has basically three modules for: localization of the plate region using the digital image of the car, extraction of the characters from digital image of the license plate, and recognition of the characters using a suitable identification method. In this paper, an algorithm is designed that can localize of the plate and extract of the characters from digital image of the license plate with the basics image processing techniques (morphological transformations, edge detection) and with the statistical data (e.g. width height ratio) of the objects identified in the analyzed digital image. It is done at the second and third stage of the presented algorithm, respectively. Finally, at the fourth stage of the presented algorithm, the character recognition is done by multilayer, one directional artificial neural network. Algorithm was implemented and verified in the Matlab/Simulink environment. Experimental results demonstrate promising efficiency of the proposed algorithm: 98% in the task of license plate localization, 95,69% in the task of characters extraction, and 95,11% in the task of characters recognition.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 47; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Image Processing Based Method Evaluating Fabric Structure Characteristics
Ocena struktury tkanin na podstawie analizy obrazu
Autorzy:
Shady, E.
Qashqary, K.
Hassan, M.
Militky, J.
Powiązania:
https://bibliotekanauki.pl/articles/234310.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
charakterystyka struktury tkaniny
rozpoznawanie wzorców
przetwarzanie obrazu
filtr Wienera
fabric structure characteristics
pattern recognition
image processing
Wiener filter
Opis:
A digital image processing approach was developed to evaluate fabric structure characteristics and to recognise the weave pattern utilising a Wiener filter. Images of six different groups were obtained and used for analysis. The groups included three different fabric structures with two different constructions for each. The approach developed decomposed the fabric image into two images, each of which included either warp or weft yarns. Yarn boundaries were outlined to evaluate the fabric surface characteristics and further used to identify the areas of interlaces to detect the fabric structure. The results showed success in evaluating the surface fabric characteristics and detecting the fabric structure for types of fabrics having the same colors of warp and weft yarns. The approach was also able to obtain a more accurate evaluation for yarn spacing and the rational fabric cover factor compared to the analytical techniques used to estimate these characteristics.
Przy zastosowaniu filtra Winera opracowano cyfrową metodę analizy obrazu umożliwiającą ocenę struktury tkanin oraz rozpoznawanie splotu. Zbadano obraz sześciu zróżnicowanych grup tkanin, o 3 rożnych splotach i 2 strukturach, uzyskując dwa obrazy dla każdej tkaniny, z których każdy obejmuje przędze osnowy lub wątku. Wyznaczono wizualne granice nitek osnowy i wątku w celu oceny właściwości powierzchni tkaniny i identyfikacji obszarów przeplotów dla zbadania struktury tkaniny. Badania dla oceny właściwości powierzchni tkaniny i jej struktury dla tkanin o takich samych kolorach przędz wątku i osnowy zakończyły się sukcesem. Dokonano również oceny rozstawu przędzy i współczynnika pokrycia tkaniny i stwierdzono, że metoda ta jest dokładniejsza niż dotychczas stosowane metody analityczne.
Źródło:
Fibres & Textiles in Eastern Europe; 2012, 6A (95); 86-90
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies