In this paper we present a machine learning-based approach for detecting platelet cells in microscopic smear images. Counting how many platelets appeared in each smear image is one of the basic tasks done in many laboratories. In many cases this is still done by a human — laboratory technician. Due to very small size and often great quantity of those cells, precise estimating of the number of platelets is not a trivial task. As in all man-dependent problems the whole process is very sensitive to errors, time-consuming and its accuracy is limited by human perception. We propose alternative, fully automatic solution that is free of those drawbacks. Our idea is based on the combination of techniques driven from two fields of modern computer science: the image analysis and pattern recognition ⁄ machine learning. It not only reduces the error rate, but, what is more important, also decreases the time needed for each smear image analysis. The obtained results are very satisfying and our solution is more precise than estimation based on human perception. This will improve the quality of laboratory work and allow to save time that can be spent on other important tasks.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00